Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn. Kẻ đường kính CD. Tia phân giác của \(\widehat {BOD}\) cắt AB tại E. a) Chứng minh rằng ED là tiếp tuyến của đường tròn (O). b) Chứng minh AC + DE ≥ 2R. c) Tính số đo \(\widehat {AOE}\).

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn. Kẻ đường kính CD. Tia phân giác của \(\widehat {BOD}\) cắt AB tại E.

a) Chứng minh rằng ED là tiếp tuyến của đường tròn (O).

b) Chứng minh AC + DE ≥ 2R.

c) Tính số đo \(\widehat {AOE}\).

1 trả lời
Hỏi chi tiết
14
0
0
Phạm Minh Trí
13/09 17:35:03

a) Xét ∆OBE và ∆ODE có:

OE là cạnh chung

\(\widehat {BOE} = \widehat {DOE}\) (gt)

OB = OD = R

Do đó ∆OBE = ∆ODE (c.g.c)

Suy ra \(\widehat {OBE} = \widehat {ODE} = 90^\circ \)

Do đó ED là tiếp tuyến của đường tròn (O).

b) Theo tính chất của hai tiếp tuyến cắt hau, ta có:

AC = AB; BE = DE

Nên: AC + DE = AB + BE = AE        (1)

Từ câu a) ta có CD\( \bot \)DE, mà CD\( \bot \)AC (gt) nên ED // AC.

Vì CD là khoảng cách giữa hai đường thẳng song song AC và DE

nên AE ≥ CD = 2R          (2)

Từ (1) và (2) suy ra: AC + DE ≥ 2R.

c) Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

OA là tia phân giác của \(\widehat {BOC}\), OE là tia phân giác của \(\widehat {BOD}\).

Mà \(\widehat {BOC}\) và \(\widehat {BOD}\) kề bù nên \(\widehat {AOE} = 90^\circ \).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k