Bài tập  /  Bài đang cần trả lời

Chứng minh rằng trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng 13 chi vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

Chứng minh rằng trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng 13 chi vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

1 Xem trả lời
Hỏi chi tiết
19
0
0
Nguyễn Thu Hiền
13/09/2024 17:38:58

Giả sử độ dài ba cạnh của tam giác là a, b, c với a ≥ b ≥ c > 0.

Theo bất đẳng thức tam giác ta có a < b + c.

Suy ra a + a < a + b + c.

Hay  a

Vì a ≥ b, a ≥ c nên a + a + a ≥ a + b + c.

Hay 3a ≥ a + b + c.

Do đó  a≥a+b+c3 (2)

Từ (1) và (2) suy ra: a+b+c3≤a

Mà chu vi của tam giác này là a + b + c.

Vậy trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng 13  chi vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×