Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi M là trung điểm OO’. Qua A, kẻ đường thẳng vuông góc với AM, cắt các đường tròn (O) và (O’) tại C và D. Chứng minh rằng tam giác MCD cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi E là trung điểm của AC.
Suy ra AE = CE và OE ⊥ AC (1)
Gọi F là trung điểm của AD.
Suy ra AF = FD và O’F ⊥ AD (2)
Từ (1), (2), suy ra OE // O’F.
Mà MA ⊥ CD (do giả thiết).
Do đó OE // MA // O’F.
Khi đó tứ giác OO’FE là hình thang có MA là đường trung bình (vì M là trung điểm OO’).
Suy ra A là trung điểm của EF.
Do đó AE = AF.
Vì vậy 2AE = 2AF.
Suy ra AC = AD.
Khi đó A là trung điểm của CD.
Tam giác MCD có MA vừa là đường trung tuyến, vừa là đường cao.
Vậy tam giác MCD cân tại M.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |