Cho đường tròn (O) và điểm A ngoài (O). Qua A kẻ các tiếp tuyến AB, AC với (O) trong đó B, C là các tiếp điểm. Lấy M là điểm thuộc cung nhỏ BC. Tiếp tuyến qua M với (O) cắt AB, AC lần lượt tại D và E. Chứng minh:
a) Chu vi tam giác ADE bằng 2AB.
b) \(\widehat {DOE} = \frac{1}{2}\widehat {BOC}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có BD, MD là hai tiếp tuyến của (O).
Suy ra DB = DM (tính chất hai tiếp tuyến cắt nhau).
Chứng minh tương tự, ta được ME = CE và AB = AC.
Ta có chu vi tam giác ADE là: AD + DE + EA = AD + DM + ME + AE
= AD + DB + CE + AE = AB + AC = 2AB.
Vậy ta có điều phải chứng minh.
b) Ta có , MD là hai tiếp tuyến của (O).
Suy ra OD là tia phân giác của \(\widehat {BOM}\) (tính chất hai tiếp tuyến cắt nhau).
Do đó \(\widehat {DOM} = \frac{1}{2}\widehat {BOM}\).
Chứng minh tương tự, ta được \(\widehat {MOE} = \frac{1}{2}\widehat {MOC}\).
Ta có \(\widehat {DOE} = \widehat {DOM} + \widehat {MOE} = \frac{1}{2}\widehat {BOM} + \frac{1}{2}\widehat {MOC} = \frac{1}{2}\left( {\widehat {BOM} + \widehat {MOC}} \right) = \frac{1}{2}\widehat {BOC}\).
Vậy ta có điều phải chứng minh.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |