Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) \(\Delta AMB = \Delta EMC\).
b) AC ⊥ CE.
c) BC = 2AM.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét \(\Delta ABM\) và \(\Delta ECM\) có:
BM = CM (do M là trung điểm BC)
\(\widehat {AMB} = \widehat {EMC}\) (đối đỉnh)
AM = ME
Do đó \(\Delta ABM = \Delta ECM\left( {c.g.c} \right)\)
b) Ta có: \(\Delta ABM = \Delta ECM\)
⇒ \(\widehat {BAM} = \widehat {CEM}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong của AB và CE
⇒ AB // CE
mà AB ⊥ AC (do \(\Delta ABC\) vuông tại A)
⇒ CE ⊥ AC
c) Xét \(\Delta ABC\) vuông tại A có AM là trung tuyến
⇒ \(AM = BM = CM = \frac{2}\).
⇒ BC = 2AM.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |