Cho hình chóp S.ABC, đáy ABC là tamgiác đều cạnh a; SA ^ (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của Alên SB; SC. Tính diện tích mặt cầu đi qua 5 điểm A, B, C, K, H.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi AD là đường kính đường tròn ngoại tiếp ∆ABC (1)
Ta có: \(\left\{ \begin{array}{l}AH \bot SB\;\left( {gt} \right)\\AH \bot DB\end{array} \right. \Rightarrow AH \bot \left( {SBD} \right)\)
Suy ra AH ^ HD (2)
Chứng minh tương tự ta được: AK ^ KD (3)
Từ (1), (2), (3) ta suy ra 5 điểm A B, C, H, K cùng nằm trên mặt cầu đường kính AD.
Gọi O là trung điểm của AD, ta có:
\(R = AO = \frac{{a\sqrt 3 }}{3}\) (vì ∆ABC là tam giác đều có cạnh là a0
Vậy diện tích mặt cầu đi qua 5 điểm A, B, C, H, K là:
\(S = 4\pi {R^2} = 4\pi {\left( {\frac{{a\sqrt 3 }}{3}} \right)^2} = \frac{{4\pi {a^2}}}{3}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |