Bài tập  /  Bài đang cần trả lời

Cho tứ diện S.ABC có đáy là tam giác đều ABC có đường cao AH = 2a. Gọi O là trung điểm AH, SO vuông góc mp(ABC) và SO = 2a. Gọi I là một điểm trên OH, đặt AI = x (a < x < 2a) và (α) là mặt phẳng qua I và (α) vuông góc AH. a) Xác định thiết diện của (α) với tứ diện S.ABC. b) Tính diện tích thiết diện của (α) và S.ABC theo a và x.

Cho tứ diện S.ABC có đáy là tam giác đều ABC có đường cao AH = 2a. Gọi O là trung điểm AH, SO vuông góc mp(ABC) và SO = 2a. Gọi I là một điểm trên OH, đặt AI = x (a < x < 2a) và (α) là mặt phẳng qua I và (α) vuông góc AH.

a) Xác định thiết diện của (α) với tứ diện S.ABC.

b) Tính diện tích thiết diện của (α) và S.ABC theo a và x.

1 Xem trả lời
Hỏi chi tiết
19
0
0
Tôi yêu Việt Nam
13/09/2024 23:03:53

Lời giải

a) • Ta có: BC ⊥ OH

Qua I, dựng MQ // BC (M ∈ AB, Q ∈ AC) thì MQ ⊥ OH.

Mặt khác, ta có: SO ⊥ OH.

Dựng IJ // OS (J ∈ SH) thì IJ ∈ OH.

Do đó mp(α) là mặt phẳng (JMQ).

• Ta có: MQ // BC nên (α) // BC.

Suy ra (α) cắt (SBC) theo giao tuyến qua J và song song với BC.

Do đó, qua J dựng đường thẳng song song với BC, cắt SB và SC tại N và P ta được MNPQ là thiết diện cần dựng.

Vì NP // MQ // BC nên MNPQ là hình thang.

Ta có: OB = OC Þ DSOB = DSOC Þ SB = SC

Þ DSAB = DSAC \( \Rightarrow \widehat {SBA} = \widehat {SCA}\).

Ta cũng có: BN = CP, BM = CQ, do đó: DBMN = DCQP.

Do đó: MN = QP suy ra MP = NQ.

Vậy thiết diện là hình thang cân.

c) Do AH = 2a, ta tính được \(BC = \frac{{4a\sqrt 3 }}{3}\)

\(\frac = \frac = \frac{x} \Rightarrow MQ = \frac{x}.\frac{{4a\sqrt 3 }}{3} = \frac{{2x\sqrt 3 }}{3}\)

\(\frac = \frac = \frac = \frac{a}\)

\( \Rightarrow NP = \frac{a}.\frac{{4a\sqrt 3 }}{3} = \frac{{4\left( {x - a} \right)\sqrt 3 }}{3}\)

\(\frac = \frac = \frac{a} \Rightarrow IJ = 2\left( {2a.x} \right)\)

\({S_{MNP}} = \frac{1}{2}\left( {MQ + NP} \right)IJ = \frac{1}{2}\left( {\frac{{2x\sqrt 3 }}{3} + \frac{{4\left( {x - a} \right)\sqrt 3 }}{3}} \right)2\left( {2a - x} \right)\)

        \( = \frac{{2\sqrt 3 }}{3}\left( {3x - 2a} \right)\left( {2a - x} \right)\).

Àp dụng bất đẳng thức Cô-si:

\(\begin{array}{*{20}{r}}{}&{S = 2\sqrt 3 \left( {x - \frac{2}{3}} \right)\left( {2a - x} \right) \le 2\sqrt 3 {{\left( {\frac{3}} \right)}^2} = \frac{{8\sqrt 3 }}{9}{a^2}}\end{array}\)

Dấu "=" xảy ra khi \(x.\frac{2}{3}a = 2a - x \Leftrightarrow x = \frac{4}{9}a{\rm{\;}}\left( {tm} \right)\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×