Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC. Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
• Xét ∆BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH
Nên DI = IB = \(\frac{1}{2}BH\) (tính chất tam giác vuông)
Suy ra ΔIDB cân tại I.
Do đó \(\widehat {DIB} = 180^\circ - 2\widehat B\) (1)
• Xét ∆HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.
Nên EK = KH = \(\frac{1}{2}HC\) (tính chất tam giác vuông)
Suy ra ΔKHE cân tại K.
Do đó \(\widehat {EKH} = 180^\circ - 2\widehat {KHE}\) (2)
Tứ giác ADHE là hình chữ nhật nên: HE // AD hay HE // AB.
Do đó \(\widehat B = \widehat {KHE}\) (đồng vị)
Từ (1), (2) và (3) suy ra: \(\widehat {DIB} = \widehat {EKH}\) (3)
Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |