Cho tam giác ABC vuông tại A và các điểm D, E, F như Hình 9.77 sao cho AD là phân giác của góc BAC, DE và DF lần lượt vuông góc với AC và BC.
Chứng minh rằng:
a) BDBC=ABAB+AC, từ đó suy ra AE=AB⋅ACAB+AC;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì AD là tia phân giác của góc BAC nên BDDC=ABAC.
Suy ra BD . AC = DC . AB. (*)
Xét BD . (AB + AC) = BD . AB + BD . AC
= BD . AB + DC . AB (do (*))
= AB . (BD + DC)
= AB . BC.
Vậy BD . (AB + AC) = AB . BC. Suy ra BDBC=ABAB+AC. (1)
Hai tam giác CED vuông tại E và tam giác CAB vuông tại A có góc nhọn C chung nên
∆CED ∽ ∆CAB.
Suy ra CECA=CDCB⇒AC−AEAC=BC−BDBC⇒1−AEAC=1−DBBC.
Do đó, AEAC=DBBC. (2)
Từ (1) và (2) suy ra AEAC=ABAB+AC, do đó AE=AB⋅ACAB+AC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |