Cho hai hàm số f(x) = x2 và g(x) = x3, với các đồ thị như hình dưới đây.
a) Tìm các tập xác định Df, Dg của các hàm số f(x) và g(x).
b) Chứng tỏ rằng f(– x) = f(x), ∀ x ∈ Df. Có nhận xét gì về tính đối xứng của đồ thị hàm số y = f(x) đối với hệ trục tọa độ Oxy?
c) Chứng tỏ rằng g(– x) = – g(x), ∀ x ∈ Dg. Có nhận xét gì về tính đối xứng của đồ thị hàm số y = g(x) đối với hệ trục tọa độ Oxy?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Biểu thức x2 và x3 luôn có nghĩa với mọi x ∈ ℝ.
Vậy tập xác định của hàm số f(x) = x2 là Df = ℝ và tập xác định của hàm số g(x) = x3 là Dg = ℝ.
b) ∀ x ∈ Df, ta luôn có f(– x) = (– x)2 = x2 = f(x). Vậy f(– x) = f(x), ∀ x ∈ Df.
Từ hình vẽ ta thấy đồ thị hàm số f(x) = x2 đối xứng với nhau qua trục tung Oy.
c) ∀ x ∈ Dg, ta luôn có g(– x) = (– x)3 = – x3 = – g(x). Vậy g(– x) = – g(x), ∀ x ∈ Dg.
Từ hình vẽ ta thấy đồ thị hàm số g(x) = x3 nhận gốc tọa độ O làm tâm đối xứng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |