Một cửa hàng đã ghi lại số tiền bán xăng cho 35 khách hàng đi xe máy. Mẫu số liệu gốc có dạng: x1, x2, ..., x35 trong đó xi là số tiền bán xăng cho khách hàng thứ i. Vì một lí do nào đó, cửa hàng chỉ có mẫu số liệu ghép nhóm dạng sau:
Số tiền (nghìn đồng) | [0; 30) | [30; 60) | [60; 90) | [90; 120) |
Số khách hàng | 3 | 15 | 10 | 7 |
Bảng 3.1. Số tiền khách hàng mua xăng
Dựa trên mẫu số liệu ghép nhóm này, làm thế nào để ước lượng các số đặc trưng đo xu thế trung tâm (số trung bình, trung vị, tứ phân vị, mốt) cho mẫu số liệu gốc?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:
+) Số trung bình
Trong mỗi khoảng số tiền, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
Số tiền (nghìn đồng) | 15 | 45 | 75 | 105 |
Số khách hàng | 3 | 15 | 10 | 7 |
Tổng số khách hàng là n = 35. Số tiền bán xăng trung bình của 35 khách hàng là
\(\overline x = \frac = 63\) (nghìn đồng).
Do đó, số trung bình cho mẫu số liệu gốc khoảng 63 nghìn đồng.
+) Số trung vị, tứ phân vị
Cỡ mẫu là n = 35.
Gọi x1, x2, ..., x35 là số tiền xăng của 35 khách hàng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là x18. Do x18 thuộc nhóm [30; 60) nên nhóm này chứa trung vị. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có
\({M_e} = 30 + \frac{{\frac{2} - 3}}.30 = 59\).
Tứ phân vị thứ nhất Q1 là x9. Do x9 thuộc nhóm [30; 60) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có
\({Q_1} = 30 + \frac{{\frac{4} - 3}}.30 = 41,5\).
Tứ phân vị thứ ba Q3 là x27. Do x27 thuộc nhóm [60; 90) nên nhóm này chứa Q3. Do đó, p = 3; a3 = 60; m3 = 10; m1 + m2 = 3 + 15 = 18; a4 – a3 = 90 – 60 = 30 và ta có
\({Q_3} = 60 + \frac{{\frac{4} - 18}}.30 = 84,75\).
Tứ phân vị thứ hai Q2 = Me = 59.
Do đó, trung vị của mẫu số liệu gốc khoảng 59 và các tứ phân vị khoảng 41,5; 59; 84,75.
+) Mốt
Tần số lớn nhất là 15 nên nhóm chứa mốt là nhóm [30; 60). Ta có, j = 2, a2 = 30, m2 = 15, m1 = 3, m3 = 10, h = 30. Do đó
\({M_o} = 30 + \frac{{\left( {15 - 3} \right) + \left( {15 - 10} \right)}}.30 \approx 51,18\).
Vậy mốt của mẫu số liệu gốc xấp xỉ 51,18.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |