Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Vì hai mặt phẳng (P) và (Q) song song với mặt phẳng (ABC) nên (P) // (Q), do đó ba mặt phẳng (ABC), (P) và (Q) đôi một song song. Theo định lí Thalés trong không gian, ta suy ra \(\frac{{{A_2}{A_1}}}{{A{A_1}}} = \frac{{{B_2}{B_1}}}{{B{B_1}}} = \frac{{{C_2}{C_1}}}{{C{C_1}}}\).
Mà AA1 = A1A2 nên \[\frac{{{A_2}{A_1}}}{{A{A_1}}} = 1\], suy ra \(\frac{{{A_2}{A_1}}}{{A{A_1}}} = \frac{{{B_2}{B_1}}}{{B{B_1}}} = \frac{{{C_2}{C_1}}}{{C{C_1}}} = 1\), do đó BB1 = B1B2 và CC1 = C1C2.
Sử dụng định lí Thalés ta cũng chứng minh được \(\frac{{{A_2}S}}{{{A_2}{A_1}}} = \frac{{{B_2}S}}{{{B_2}{B_1}}} = \frac{{{C_2}S}}{{{C_2}{C_1}}}\).
Mà A1A2 = A2S nên \(\frac{{{A_2}S}}{{{A_2}{A_1}}} = 1\), suy ra \(\frac{{{A_2}S}}{{{A_2}{A_1}}} = \frac{{{B_2}S}}{{{B_2}{B_1}}} = \frac{{{C_2}S}}{{{C_2}{C_1}}} = 1\), do đó B1B2 = B2S và C1C2 = C2S.
Vậy BB1 = B1B2 = B2S và CC1 = C1C2 = C2S.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |