Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.
a) Tính tổng Sn = u1 + u2 + ... + un.
b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Ta có: u1 là độ dài cạnh của hình vuông được tô màu tạo từ việc chia hình vuông cạnh 1 thành 4 hình vuông nhỏ bằng nhau, do đó \({u_1} = \frac{1}{2}\).
Cứ tiếp tục như thế, ta được: \({u_2} = \frac{1}{2}{u_1},\,\,{u_3} = \frac{1}{2}{u_2}\),..., \({u_n} = \frac{1}{2}{u_{n - 1}}\), ...
Do vậy, độ dài cạnh của các hình vuông được tô màu lập thành một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{2}\) và công bội \(q = \frac{1}{2}\).
Do đó, tổng của n số hạng đầu là
Sn = u1 + u2 + ... + un = \(\frac{{{u_1}\left( {1 - {q^n}} \right)}} = \frac{{\frac{1}{2}\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}}\)\( = 1 - {\left( {\frac{1}{2}} \right)^n}\).
b) Ta có: S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\)= \(\mathop {\lim }\limits_{n \to + \infty } \left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)\) \( = \mathop {\lim }\limits_{n \to + \infty } 1 - \mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{2}} \right)^n} = 1 - 0 = 1\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |