Một bảng giá cước taxi được cho như sau:
Giá mở cửa (0,5 km đầu) | Giá cước các km tiếp theo đến 30 km | Giá cước từ km thứ 31 |
10 000 đồng | 13 500 đồng | 11 000 đồng |
a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.
b) Xét tính liên tục của hàm số ở câu a.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.
Với x ≤ 0,5, ta có y = 10 000.
Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.
Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.
Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là
\(y = \left\{ \begin{array}{l}10\,000,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 < x \le 0,5\\13\,500x + 3\,250,\,\,\,\,\,\,\,\,0,5 < x \le 30\\11\,000x + \,78\,250,\,\,\,\,\,x > 30\end{array} \right.\) .
b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).
+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).
+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).
+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.
- Tại x = 0,5, ta có y(0,5) = 10 000;
\(\mathop {\lim }\limits_{x \to {{0,5}^ - }} y = \mathop {\lim }\limits_{x \to {{0,5}^ - }} 10\,\,000 = 10\,000\);
\(\mathop {\lim }\limits_{x \to {{0,5}^ + }} y = \mathop {\lim }\limits_{x \to {{0,5}^ + }} \left( {13\,\,500x + 3250} \right)\)= 13 500 . 0,5 + 3 250 = 10 000.
Do đó, \(\mathop {\lim }\limits_{x \to {{0,5}^ - }} y = \mathop {\lim }\limits_{x \to {{0,5}^ + }} y = \mathop {\lim }\limits_{x \to 0,5} y = y\left( {0,5} \right)\) nên hàm số liên tục tại x = 0,5.
- Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;
\(\mathop {\lim }\limits_{x \to {{30}^ - }} y = \mathop {\lim }\limits_{x \to {{30}^ - }} \left( {13\,\,500x + 3250} \right)\) = 13 500 . 30 + 3 250 = 408 250;
\(\mathop {\lim }\limits_{x \to {{30}^ + }} y = \mathop {\lim }\limits_{x \to {{30}^ + }} \left( {11\,\,000x + 78\,250} \right)\) = 11 000 . 30 + 78 250 = 408 250.
Do đó, \(\mathop {\lim }\limits_{x \to {{30}^ - }} y = \mathop {\lim }\limits_{x \to {{30}^ + }} y = \mathop {\lim }\limits_{x \to 30} y = y\left( {30} \right)\) nên hàm số liên tục tại x = 30.
Vậy hàm số ở câu a liên tục trên (0; +∞).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |