Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA = 2HB. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°. Tỉnh khoảng cách giữa hai đường thẳng SA và BC theo a.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.
Ta có BC // (SAI)
Suy ra d(BC, SA) = d(BC, (SAI))
= d(B, (SAI)) = 32dH,SAI
Gọi K là hình chiếu của H trên SI.
Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.
Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.
HAI^=180°−(60°+60°)=60°
Tam giác AIH vuông tại I:
IH=AH.sin60°=a33.SC,ABC=SC,CH=SCH^=60°.CH2=BC2+BH2−2.BC.BH.cos60°=7a29⇒CH=a73.
Tam giác SHC vuông tại H: SH=HC.tan60°=a213.
Tam giác SHI vuông tại H:
1HK2=1SH2+1HI2⇒HK=a4212.
dB,SAI=32.HK=a428.
⇒dSA,BC=a428.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |