Bài tập  /  Bài đang cần trả lời

Cho đường tròn tâm O và BC là dây cung không đi qua tâm. Trên tia đối của tia BC lấy điểm M sao cho M không trùng với B. Đường thẳng đi qua M cắt đường tròn (O) đã cho tại N và P (N nằm giữa M và P) sao cho O nằm trong PMC. Gọi A là điểm chính giữa của cung nhỏ NP. Các dây AB và AC lần lượt cắt NP tại D và E. a) Chứng minh tứ giác BDEC nội tiếp.

Cho đường tròn tâm O và BC là dây cung không đi qua tâm. Trên tia đối của tia BC lấy điểm M sao cho M không trùng với B. Đường thẳng đi qua M cắt đường tròn (O) đã cho tại N và P (N nằm giữa M và P) sao cho O nằm trong PMC. Gọi A là điểm chính giữa của cung nhỏ NP. Các dây AB và AC lần lượt cắt NP tại D và E.

a) Chứng minh tứ giác BDEC nội tiếp.

1 Xem trả lời
Hỏi chi tiết
15
0
0
Trần Đan Phương
13/09/2024 23:32:43

a) Gọi I là giao điểm của OA và NP

Ta có độ dài cung AN bằng độ dài cung AP nên suy ra AN = AP

Và ON = OP = R.

=> OA là đường trung trực của đoạn thẳng NP

=> OA ⊥ NP tại I

=> AID^=90°⇒ADI^=90°−IAD^

Hay ADP^=90°−OAB^

Lại có: OA = OB => ∆OAB cân tại O.

⇒OAB^=180°−AOB^2=90°−AOB^2

Suy ra ADP^=90°−90°−AOB^2=AOB^2

Mà MDB^=ADP^ (Hai góc đối đỉnh) ⇒MDB^=AOB^2

Đường tròn (O) có:  là góc nội tiếp chắn cung AB và  là góc ở tâm chắn cung AB nên suy ra: ACB^=AOB^2⇒ACB^=MDB^

Hay ECB^=MDB^

Tứ giác BNDC có ECB^+EDB^=MDB^+EDB^=MDE^=180°

Suy ra BNDC là tứ giác nội tiếp.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×