Bài tập  /  Bài đang cần trả lời

Cho đường thẳng \(d:y = \left( {m - \frac{1}{2}} \right)x + 2m - 2\) với \(m \ne \frac{1}{2}\). Tìm giá trị của m để: a) Đường thẳng d song song với đường thẳng \({d_1}:y = \frac{1}{2}mx - 2\) với m ≠ 0; b) Đường thẳng d trùng với đường thẳng \({d_2}:y = x - \frac{2}{3}m + 2\); c) Đường thẳng d và đường thẳng \({d_3}:y = \sqrt 2 x - m + 2\) cắt nhau tại một điểm nằm trên trục Oy.

Cho đường thẳng \(d:y = \left( {m - \frac{1}{2}} \right)x + 2m - 2\) với \(m \ne \frac{1}{2}\). Tìm giá trị của m để:

a) Đường thẳng d song song với đường thẳng \({d_1}:y = \frac{1}{2}mx - 2\) với m ≠ 0;

b) Đường thẳng d trùng với đường thẳng \({d_2}:y = x - \frac{2}{3}m + 2\);

c) Đường thẳng d và đường thẳng \({d_3}:y = \sqrt 2 x - m + 2\) cắt nhau tại một điểm nằm trên trục Oy.

1 trả lời
Hỏi chi tiết
10
0
0

Lời giải

a) Để d song song với d1 thì \(m - \frac{1}{2} = \frac{1}{2}m\) và \(2m - 2 \ne - 2\).

Suy ra \(\frac{1}{2}m = \frac{1}{2}\) và \(2m \ne 0\)

Do đó m = 1 và m ≠ 0. Vì vậy m = 1.

Dễ thấy với m = 1 ta có d và d1 trở thành \(d:y = \frac{1}{2}x\) và \({d_1}:y = \frac{1}{2}x - 2\). Khi đó, d song song với d1.

b)  Để đường thẳng d trùng với đường thẳng \({d_2}:y = x - \frac{2}{3}m + 2\) thì \[m - \frac{1}{2} = 1\,\,\,\left( 1 \right)\] và \[2m - 2 = - \frac{2}{3}m + 2\,\,\,\left( 2 \right)\]

Từ (1) ta có \(m = \frac{3}{2}\)   (3);

Từ (2) ta có \(\frac{8}{3}m = 4\), do dó \(m = 4:\frac{8}{3} = \frac{3}{2}\)   (4).

Từ (3) và (4) ta được \(m = \frac{3}{2}\).

c) Với x = 0 thay vào \(d:y = \left( {m - \frac{1}{2}} \right)x + 2m - 2\) ta có: y = 2m – 2. Do đó đường thẳng d cắt trục Oy tại điểm A(0; 2m ‒ 2).

Với x – 0 thay vào \({d_3}:y = \sqrt 2 x - m + 2\) ta có y = –m + 2. Do đó đường thẳng d3 cắt trục Oy tại điểm B(0; ‒m + 2).

Để hai đường thẳng d và d3 cắt nhau tại một điểm nằm trên trục Oy thì \(m - \frac{1}{2} \ne \sqrt 2 \,\,\,\left( * \right)\) và điểm A trùng điểm B (**)

Từ (*) ta có \(m \ne \sqrt 2 + \frac{1}{2}\);

Từ (**) ta có 2m ‒ 2 = ‒m + 2, do đó 3m = 4. Suy ra \(m = \frac{4}{3}\) (thỏa mãn).

Dễ thấy với \(m = \frac{4}{3}\) ta có d và d3 trở thành \(d:y = \frac{5}{6}x + \frac{2}{3}\) và \({d_3}:y = \sqrt 2 x + \frac{2}{3}\). Khi đó, d và d3 cắt nhau tại điểm \(\left( {0;\frac{2}{3}} \right)\) nằm trên trục Oy.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư