Một người đã vẽ xong bức tranh một con thiên nga đang bơi trên mặt hồ (đường thẳng d) (Hình 7a). Người đó muốn vẽ bóng của con thiên nga đó xuống mặt nước (như Hình 7b) bằng cách gấp tờ giấy theo đường thẳng d và đồ theo hình con thiên nga trên nửa tờ giấy còn lại. Chứng tỏ rằng đây là một phép dời hình.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta đặt f là phép biến hình biến con thiên nga trong bức tranh thành bóng của con thiên nga đó qua đường thẳng d (mặt hồ).
Chọn M’ = f(M) hay M’ là điểm đối xứng của M qua d.
Suy ra d là đường trung trực của đoạn thẳng MM’.
Gọi H là giao điểm của MM’ và d.
Khi đó H là trung điểm của MM’ và MM’ ⊥ d tại H.
Trên hình 7b, chọn điểm N tùy ý trên con thiên nga đã vẽ trên mặt hồ (như hình vẽ).
Chọn N’ = f(N) hay N’ là điểm đối xứng của N qua d.
Suy ra d là đường trung trực của đoạn thẳng NN’.
Gọi K là giao điểm của NN’ và d.
Khi đó K là trung điểm của NN’ và NN’ ⊥ d tại K.
Ta có MN→+M'N'→=MH→+HK→+KN→+M'H→+HK→+KN'→
=MH→+M'H→+KN→+KN'→+2HK→
=0→+0→+2HK→ (do H, K lần lượt là trung điểm của MM’, NN’)
=2HK→.
Lại có MN→−M'N'→=HN→−HM→−HN'→−HM'→.
=HN→−HM→−HN'→+HM'→
=HN→−HN'→+HM'→−HM→=N'N→+MM'→
Ta có MN→2−M'N'→2=MN→+M'N'→MN→−M'N'→=2HK→N'N→+MM'→
=2HK→.N'N→+2HK→.MM'→=2.0+2.0=0 (do MM’ ⊥ d và NN’ ⊥ d).
Suy ra MN→2=M'N'→2.
Do đó MN = M’N’.
Vì vậy phép biến hình f bảo toàn khoảng cách giữa hai điểm bất kì.
Vậy ta có điều phải chứng minh.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |