Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD và P là một điểm nằm trên CD. Đường thẳng BC cắt mặt phẳng (MNP) tại Q. Chứng minh rằng PQ // BD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: BD = (ABD) ∩ (BCD).
Lại có M ∈ AB ⊂ (ABD), N ∈ AD ⊂ (ABD) nên MN ⊂ (ABD).
Mà MN ⊂ (MNP) nên MN = (ABD) ∩ (MNP).
Vì BC cắt mặt phẳng (MNP) tại Q nên PQ là giao tuyến của (MNP) và (BCD).
Khi đó, ba mặt phẳng (ABD), (BCD), (MNP) đôi một cắt nhau theo các giao tuyến BD, PQ, MN.
Mà trong tam giác ABD, vì MN là đường trung bình nên MN // BD.
Vậy theo định lí về giao tuyến của ba mặt phẳng, ta có PQ // BD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |