Bài tập  /  Bài đang cần trả lời

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không là trung điểm của CD, CB). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì ba đường thẳng MQ, NP và AC cùng đi qua một điểm.

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không là trung điểm của CD, CB). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì ba đường thẳng MQ, NP và AC cùng đi qua một điểm.

1 Xem trả lời
Hỏi chi tiết
9
0
0
Bạch Tuyết
14/09/2024 01:06:56

Giả sử M, N, P, Q cùng thuộc một mặt phẳng.

Xét tam giác ABC, do Q không là trung điểm của BC nên đường thẳng MQ cắt đường thẳng AC tại điểm S.

Khi đó, S ∈ (MNPQ) và S ∈ (ACD). Do vậy S là một điểm chung của hai mặt phẳng (ACD) và (MNPQ). (1)

Do N ∈ AD nên N ∈ (ACD) và P ∈ CD nên P ∈ (ACD), suy ra NP ⊂ (ACD).

Mà NP ⊂ (MNPQ) nên NP là giao tuyến của hai mặt phẳng (ACD) và (MNPQ). (2)

Từ (1) và (2) suy ra S ∈ NP.

Vậy ba đường thẳng MQ, NP và AC cùng đi qua điểm S.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×