Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không là trung điểm của CD, CB). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì ba đường thẳng MQ, NP và AC cùng đi qua một điểm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử M, N, P, Q cùng thuộc một mặt phẳng.
Xét tam giác ABC, do Q không là trung điểm của BC nên đường thẳng MQ cắt đường thẳng AC tại điểm S.
Khi đó, S ∈ (MNPQ) và S ∈ (ACD). Do vậy S là một điểm chung của hai mặt phẳng (ACD) và (MNPQ). (1)
Do N ∈ AD nên N ∈ (ACD) và P ∈ CD nên P ∈ (ACD), suy ra NP ⊂ (ACD).
Mà NP ⊂ (MNPQ) nên NP là giao tuyến của hai mặt phẳng (ACD) và (MNPQ). (2)
Từ (1) và (2) suy ra S ∈ NP.
Vậy ba đường thẳng MQ, NP và AC cùng đi qua điểm S.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |