Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng bằng 480.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi số hạng nhỏ nhất trong các số cần tìm là u và công sai của cấp số cộng là d.
Khi đó, năm số hạng liên tiếp là u, u + d, u + 2d, u + 3d, u + 4d.
Vì tổng của chúng bằng 40 nên u + u + d + u + 2d + u + 3d + u + 4d = 40
⇔ 5u + 10d = 40 ⇔ u + 2d = 8.
⇔ u = 8 – 2d. (1)
Lại có tổng bình phương của chúng bằng 480 nên
u2 + (u + d)2 + (u + 2d)2 + (u + 3d)2 + (u + 4d)2 = 480. (2)
Thế (1) vào (2) ta được:
(8 – 2d)2 + (8 – 2d + d)2 + (8 – 2d + 2d)2 + (8 – 2d + 3d)2 + (8 – 2d + 4d)2 = 480
⇔ (8 – 2d)2 + (8 – d)2 + 82 + (8 + d)2 + (8 + 2d)2 = 480
⇔ 64 – 32d + 4d2 + 64 – 2d + d2 + 64 + 64 + 2d + d2 + 64 + 32d + 4d2 = 480
⇔ 10d2 + 320 = 480
⇔ 10d2 = 160
⇔ d2 = 16
⇔ d = ±4
+ Với d = 4, ta có u = 8 – 2 . 4 = 0.
+ Với d = – 4, ta có u = 8 – 2 . (– 4) = 16.
Vậy năm số hạng liên tiếp cần tìm là 0, 4, 8, 12, 16.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |