Bài tập  /  Bài đang cần trả lời

Cho hình vuông C1 có cạnh bằng 1. Gọi C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1; C3 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C2; ... Cứ tiếp tục quá trình như trên, ta được dãy các hình vuông C1; C2; C3; ...; Cn; ... Diện tích của hình vuông C2023 là: A. \(\frac{1}{{{2^{2022}}}}\). B. \(\frac{1}{{{2^{2023}}}}\). C. \(\frac{1}{{{2^{1011 ...

Cho hình vuông C1 có cạnh bằng 1. Gọi C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1; C3 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C2; ... Cứ tiếp tục quá trình như trên, ta được dãy các hình vuông C1; C2; C3; ...; Cn; ... Diện tích của hình vuông C2023 là:

A. \(\frac{1}{{{2^{2022}}}}\).

B. \(\frac{1}{{{2^{2023}}}}\).

C. \(\frac{1}{{{2^{1011}}}}\).

D. \(\frac{1}{{{2^{1012}}}}\).

1 trả lời
Hỏi chi tiết
37
0
0
Phạm Minh Trí
14/09 01:12:34

Đáp án đúng là: A

Hình vuông C1 có diện tích S1 = 1.

Hình vuông C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1, do đó hình vuông C2 có diện tích S2 = \(\frac{1}{2}{S_1} = \frac{1}{2}\).

Tương tự, hình vuông C3 có diện tích \({S_3} = \frac{1}{2}{S_2} = \frac{1}{2}.\frac{1}{2} = \frac{1}{{{2^2}}}\).

Cứ tiếp tục như thế ta tính được diện tích hình vuông C2023 là \({S_{2023}} = \frac{1}{{{2^{2022}}}}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư