Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do ABCD là hình thang cân nên AD = BC, AC = BD, ADC^=BCD^
Xét ∆ABC và ∆BAD có
BC = AD, AC = BD, cạnh AB chung
Do đó ∆ABC = ∆BAD (c.c.c)
Suy ra BAC^=ABD^.
Từ đó OAB là tam giác cân tại O, nên OA = OB.
Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD
Suy ra OC = OD.
Do đó O cách đều A và B; O cách đều C và D;
Do AB // CD nên SAB^=SDC^; SBA^=SCD^ (các cặp góc ở vị trí đồng vị)
Mà ADC^=BCD^ hay SDC^=SCD^ suy ra SAB^=SDC^=SBA^=SCD^
Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD
Do đó S cũng cách đều A và B, cách đều C và D.
Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |