Bài tập  /  Bài đang cần trả lời

Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.

Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.

1 Xem trả lời
Hỏi chi tiết
18
0
0
Nguyễn Thị Nhài
14/09/2024 06:59:08

Do ABCD là hình thang cân nên AD = BC, AC = BD,   ADC^=BCD^

Xét ∆ABC và ∆BAD có

BC = AD, AC = BD, cạnh AB chung

Do đó ∆ABC = ∆BAD (c.c.c)

Suy ra  BAC^=ABD^.

Từ đó OAB là tam giác cân tại O, nên OA = OB.

Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD

Suy ra OC = OD.

Do đó O cách đều A và B; O cách đều C và D;

Do AB // CD nên  SAB^=SDC^;  SBA^=SCD^ (các cặp góc ở vị trí đồng vị)

Mà  ADC^=BCD^ hay  SDC^=SCD^ suy ra  SAB^=SDC^=SBA^=SCD^

Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD

Do đó S cũng cách đều A và B, cách đều C và D.

Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×