Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt tại hai điểm C, E (khác điểm A). Đường thẳng AO’ cắt (O) và (O’) lần lượt tại hai điểm D, F (khác điểm A). Chứng minh:
a) C, B, F thẳng hàng;
b) Bốn điểm C, D, E, F cùng nằm trên một đường tròn;
c) A là tâm đường tròn nội tiếp tam giác BDE.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét đường tròn (O) có AC là đường kính nên ABC^=90° (góc nội tiếp chắn nửa đường tròn (O)).
Xét đường tròn (O’) có AF là đường kính nên ABF^=90° (góc nội tiếp chắn nửa đường tròn (O’)).
Do đó ABC^+ABF^=90°+90°=180° hay CBF^=180°.
Suy ra C, B, F thẳng hàng.
b) Xét đường tròn (O) có AC là đường kính nên ADC^=90° (góc nội tiếp chắn nửa đường tròn (O)).
Xét đường tròn (O’) có AF là đường kính nên AEF^=90° (góc nội tiếp chắn nửa đường tròn (O’)).
Do đó FDC^=CEF^=90° nên hai điểm D, E nằm trên đường tròn đường kính CF.
Vậy bốn điểm C, D, E, F cùng nằm trên một đường tròn đường kính CF.
c) Ta có DCA^=DBA^ (hai góc nội tiếp cùng chắn cung DA của đường tròn (O)).
Tương tự ABE^=AFE^ và DCE^=DFE^.
Suy ra ABE^=DBA^ do đó BA là phân giác của góc DBE.
Tương tự, DA là phân giác của góc BDE.
Suy ra A là tâm đường tròn nội tiếp tam giác BDE.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |