Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

B = x ^2 + y^ 2 + 8z^ 2 − 6yz − 6zx + 2xy

B = x ^2 + y^ 2 + 8z^ 2 − 6yz − 6zx + 2xy.
0 Xem trả lời
Hỏi chi tiết
26
Tham khảo câu trả lời từ Trợ lý ảo Lazi
It looks like you have a quadratic expression in three variables \( x \), \( y \), and \( z \):

\[
B = x^2 + y^2 + 8z^2 - 6yz - 6zx + 2xy.
\]

To analyze this expression further, we can consider a few approaches, such as completing the square or rewriting it in a more useful form for problem-solving. The goal is to express \( B \) in a way that reveals its properties (like whether it can be minimized or if it represents a particular surface).

### 1. Representing \( B \) in matrix form

The quadratic expression can be rewritten in the standard form using a symmetric matrix. The general form for a quadratic in multiple variables is:

\[
B = \mathbf{X}^T A \mathbf{X}
\]

where \( \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) and \( A \) is a symmetric matrix.

To find the coefficients of this quadratic, we can analyze each term in \( B \):
- The terms involving \( x^2 \), \( y^2 \), and \( z^2 \) from \( B \) form the diagonal of the matrix.
- The coefficients of the mixed terms (like \( xy, xz, yz \)) affect the off-diagonal entries.

The expression can be written in matrix form as:

\[
B = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1 & 1 & -3 \\ 1 & 1 & -3 \\ -3 & -3 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]

Where:
- The matrix entries can be inferred from how the variables interact. For instance, the coefficient of \( xy \) is \( 2 \) (hence, both \( A_{12} \) and \( A_{21} \) are \( 1 \)), the coefficient of \( xz \) is \( -6 \) (so, \( A_{13} \) and \( A_{31} \) are \( -3 \)), and so on.

### 2. Completing the Square

We could also complete the square for the given expression, but this process requires careful algebra to combine and reorganize terms appropriately.

### Conclusion

The expression given is a quadratic form in three variables \( x \), \( y \), and \( z \). Whether we analyze this form algebraically, geometrically, or in terms of optimization, it can provide useful insights based on what you're trying to achieve with the expression \( B \).

If you have a specific question or goal regarding this quadratic form, please provide more information, and I will be glad to assist you further!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×