Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O), đường thẳng d đi qua O và điểm A thuộc (O) nhưng không thuộc d. Gọi B là điểm đối xứng với A qua d; C và D lần lượt là điểm đối xứng với A và B qua O. a) Ba điểm B, C và D có thuộc (O) không? Vì sao? b) Chứng minh tứ giác ABCD là hình chữ nhật. c) Chứng minh rằng C và D đối xứng với nhau qua d.

Cho đường tròn (O), đường thẳng d đi qua O và điểm A thuộc (O) nhưng không thuộc d. Gọi B là điểm đối xứng với A qua d; C và D lần lượt là điểm đối xứng với A và B qua O.

a) Ba điểm B, C và D có thuộc (O) không? Vì sao?

b) Chứng minh tứ giác ABCD là hình chữ nhật.

c) Chứng minh rằng C và D đối xứng với nhau qua d.

1 Xem trả lời
Hỏi chi tiết
40
0
0
Trần Bảo Ngọc
16/09 08:02:48

a) Trong tam giác AHB vuông tại H, ta có

\(\cos \widehat {ABH} = \frac\) nên \(AB = \frac{{\cos \widehat {ABH}}} = \frac{{\cos 45^\circ }} = \frac{{\frac{{\sqrt 2 }}{2}}} = 20\sqrt 2 ,\)

\(\tan \widehat {ABH} = \frac\) nên \(AH = BH.\tan \widehat {ABH} = 20.\tan 45^\circ = 20.\)

Trong tam giác AHC vuông tại H, theo định lí Pythagore, ta có:

\(A{C^2} = A{H^2} + C{H^2} = {20^2} + {21^2} = 841\) nên \(AC = \sqrt {841} = 29.\)

b) Trong tam giác AHC vuông tại H, ta có

\(\sin C = \frac = \frac,\) do đó \(\widehat C \approx 44^\circ .\)

Trong tam giác ABC, ta có

\(\widehat A + \widehat B + \widehat C = 180^\circ ,\) do đó

\(\widehat A = 180^\circ - \widehat B - \widehat C = 180^\circ - 45^\circ - 44^\circ = 91^\circ .\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
CenaZero♡
16/09 08:07:45

(H.5.3)

a) Vì d là một đường kính của đường tròn và B đối xứng với A qua d nên từ A ∈ (O) suy ra AB ⊥ d.

Lại có O là tâm của đường tròn và C, D lần lượt là điểm đối xứng với A, B qua O nên từ A, B ∈ (O) suy ra C và D cũng thuộc đường tròn (O).

Vậy ba điểm B, C và D thuộc đường tròn (O).

b) Vì C đối xứng với A qua O nên O là trung điểm của AC.

Vì D đối xứng với B qua O nên O là trung điểm của BD.

Tứ giác ABCD có hai đường chéo AC và BD và O là trung điểm của AC và BD nên ABCD là hình bình hành.

Lại có, AC = BD (cùng bằng đường kính của (O)).

Do đó, hình bình hành ABCD là hình chữ nhật.

c) Vì B là điểm đối xứng với A qua d nên d là đường trung trực của AB.

Hình chữ nhật ABCD có AB // CD nên d cũng là đường trung trực của CD.

Do đó C và D đối xứng với nhau qua d.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×