Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) y = x3 – 8x2 – 12x + 1 trên đoạn [−2; 9];
b) y = −2x3 + 9x2 – 17 trên nửa khoảng (−∞; 4];
c) y = x3 – 12x + 4 trên đoạn [−6; 3];
d) y = 2x3 – x2 – 28x – 3 trên đoạn [−2; 1];
e) y = −3x3 + 4x2 – 5x – 17 trên đoạn [−1; 2].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) y = x3 – 8x2 – 12x + 1 trên đoạn [−2; 9]
Ta có: y' = 3x2 – 16x – 12
y' = 0 ⇔ 3x2 – 16x – 12 = 0 ⇔ x = 6 hoặc x = \(\frac{{ - 2}}{3}\).
Tính các giá trị, ta được: y(−2) = −15, y\(\left( { - \frac{2}{3}} \right)\) = \(\frac\) ≈ 5,15, y(6) = −143, y(9) = −26.
Do đó, \(\mathop {\max }\limits_{[ - 2;9]} y = y\left( { - \frac{2}{3}} \right) = \frac\), \(\mathop {\min }\limits_{[ - 2;9]} y\) = y(6) = −143.
b) y = −2x3 + 9x2 – 17 trên nửa khoảng (−∞; 4].
Ta có: y = −2x3 + 9x2 – 17
y' = −6x2 + 18x
y' = 0 ⇔ −6x2 + 18x = 0 ⇔ x = 0 hoặc x = 3.
Tính các giá trị, ta được: y(0) = −17, y(3) = 10, y(4) = −1.
Ta có bảng biến thiên:
Do đó, \(\mathop {\min }\limits_{\left( { - \infty ;4} \right]} y = y\left( 0 \right)\) = −17 và hàm số không có giá trị lớn nhất trên (−∞; 4].
c) y = x3 – 12x + 4 trên đoạn [−6; 3]
Ta có: y' = 3x2 – 12
y' = 0 ⇔ 3x2 – 12 = 0 ⇔ x = ±2.
Tính các giá trị, ta được: y(−6) = −140, y(−2) = 20, y(2) = −12, y(3) = −5.
Do đó, \(\mathop {\min }\limits_{\left[ { - 6;3} \right]} y = y\left( { - 6} \right)\) = −140, \(\mathop {\max }\limits_{\left[ { - 6;3} \right]} y = y\left( { - 2} \right)\) = 20.
d) y = 2x3 – x2 – 28x – 3 trên đoạn [−2; 1]
Ta có: y' = 6x2 – 2x – 28
y' = 0 ⇔ 6x2 – 2x – 28 = 0 ⇔ x = −2 hoặc x = \(\frac{7}{3}\) (loại do x = \(\frac{7}{3}\) ∉ [−2; 1]).
Tính được các giá trị, ta được: y(−2) = 33, y(1) = −30.
Do đó, \(\mathop {\min }\limits_{\left[ { - 2;1} \right]} y = y\left( 1 \right)\) = −30, \(\mathop {\max }\limits_{\left[ { - 2;1} \right]} y = y\left( { - 2} \right)\) = 33.
e) y = −3x3 + 4x2 – 5x – 17 trên đoạn [−1; 2]
Ta có: y' = −9x2 + 8x – 5
y' = 0 ⇔ −9x2 + 8x – 5 = 0 ⇒ phương trình vô nghiệm.
Do đó, \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} y = y\left( { - 1} \right)\) = −5, \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( 2 \right)\) = −35.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |