Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm các khoảng đồng biến, nghịch biến và các điểm cực trị của hàm sau? Tìm các giá trị cực trị của các hàm số sau

----- Nội dung ảnh -----
Bài tập 1: Tìm các khoảng đồng biến, nghịch biến và các điểm cực trị của hàm sau:

a) \( y = 2x^3 + 3x^2 - 12x + 2024 \)

b) \( y = -\frac{1}{4}x^4 + 2x^2 + 2 \)

c) \( y = (x-2)(x^2 + 1) \)

Bài tập 2: Tìm các khoảng đồng biến, nghịch biến và các điểm cực trị của các hàm sau:

a) \( y = -x^4 - 2x^3 + 3 \)

b) \( y = x^3 - 4x^2 + 5x - 1 \)

c) \( y = (x-2)(x^2 + 1) \)

Bài tập 3: Tìm các giá trị cực trị của các hàm số sau:

a) \( y = -x^4 + 2x^3 - 2 \)

b) \( y = 2x + 3 \)

c) \( y = x^5 - 2x^4 - 2 \)

d) \( y = x^4 - 2x^2 - 2 \)

Bài tập 4: Thể tích \( V \) (đơn vị: centimet khối) của 1 kg nước tại nhiệt độ \( T \) (10°C ≤ T ≤ 30°C) được tính theo công thức

\( V(T) = 999,87 - 0,006426T + 0,00850437T^2 - 0,00006797T^3 \)

Hỏi thể tích \( V(T) \) trong khoảng nhiệt độ nào?
0 Xem trả lời
Hỏi chi tiết
41
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm các khoảng đồng biến, nghịch biến và các điểm cực trị của các hàm, ta sẽ thực hiện các bước sau:

### Bài tập 1: Tìm các khoảng đồng biến, nghịch biến và các điểm cực trị

#### a) \( y = 2x^3 + 3x^2 - 12x + 2024 \)

1. **Tính đạo hàm**:
\[
y' = 6x^2 + 6x - 12
\]

2. **Giải phương trình \( y' = 0 \)**:
\[
6x^2 + 6x - 12 = 0 \implies x^2 + x - 2 = 0
\]
\[
(x - 1)(x + 2) = 0 \implies x = 1 \quad \text{và} \quad x = -2
\]

3. **Xét dấu của \( y' \)** trong các khoảng:
- \( (-\infty, -2) \)
- \( (-2, 1) \)
- \( (1, \infty) \)

4. **Kết luận**:
- Đồng biến trên khoảng: \( (-2, 1) \) và \( (1, \infty) \)
- Nghịch biến trên khoảng: \( (-\infty, -2) \)
- Điểm cực trị: \( x = -2 \) (cực đại) và \( x = 1 \) (cực tiểu)

#### b) \( y = x^4 + 2024 \)

1. **Tính đạo hàm**:
\[
y' = 4x^3
\]

2. **Giải phương trình \( y' = 0 \)**:
\[
4x^3 = 0 \implies x = 0
\]

3. **Xét dấu**:
- \( y' > 0 \) khi \( x > 0 \)
- \( y' < 0 \) khi \( x < 0 \)

4. **Kết luận**:
- Đồng biến trên khoảng: \( (0, \infty) \)
- Nghịch biến trên khoảng: \( (-\infty, 0) \)
- Điểm cực trị: \( x = 0 \) (cực tiểu)

#### c) \( y = -\frac{1}{4}x^4 + 2x^2 + 2 \)

1. **Tính đạo hàm**:
\[
y' = -x^3 + 4x
\]

2. **Giải phương trình \( y' = 0 \)**:
\[
-x^3 + 4x = 0 \implies x(x^2 - 4) = 0 \implies x = 0, \, x = 2, \, x = -2
\]

3. **Xét dấu**:
- Điểm phân cách: \( -2, 0, 2 \)
- Các khoảng: \( (-\infty, -2), (-2, 0), (0, 2), (2, \infty) \)

4. **Kết luận**:
- Đồng biến: \( (0, 2) \)
- Nghịch biến: \( (-\infty, -2) \) và \( (2, \infty) \)
- Điểm cực trị: \( x = -2 \) (cực đại), \( x = 0 \) (cực tiểu), \( x = 2 \) (cực đại)

#### d) \( y = x^4 - 2x^2 - 2 \)

1. **Tính đạo hàm**:
\[
y' = 4x^3 - 4x
\]

2. **Giải phương trình \( y' = 0 \)**:
\[
4x(x^2 - 1) = 0 \implies x = 0, -1, 1
\]

3. **Xét dấu**:
- Điểm phân cách: \( -1, 0, 1 \)

4. **Kết luận**:
- Đồng biến: \( (1, \infty) \) và \( (-1, 0) \)
- Nghịch biến: \( (-\infty, -1) \)
- Điểm cực trị: \( x = -1 \) (cực đại), \( x = 0 \) (cực tiểu), \( x = 1 \) (cực đại)

### Bài tập 2: Tìm các khoảng đồng biến, nghịch biến

#### a) \( y = \sqrt{x^2 - 6x + 5} \)

1. **Tính đạo hàm**:
Sử dụng quy tắc chuỗi và đạo hàm của căn bậc hai.

#### b) \( y = \frac{5x + 9}{x - 1} \)

1. **Tính đạo hàm và xét dấu**.

#### c) \( y = (x - 2)(x + 1) \)

1. **Tính đạo hàm và xét dấu**.

### Bài tập 3: Tìm các điểm cực trị

#### a) \( y = -x^{-1} + 2x^3 \)

1. Tính đạo hàm và tìm điểm cực trị.

#### b) \( y = \frac{2x + 3}{x + 1} \)

1. Tính đạo hàm và xét dấu.

#### c) \( y = x^3 - 4x^2 + 5x - 1 \)

1. Tính đạo hàm và xét dấu.

### Bài tập 4: Thể tích V

Công thức đã cho cho việc tính thể tích \( V(T) \) đủ để thiết lập các phương trình cần thiết.

Nếu bạn cần giúp đỡ cụ thể với từng hàm hoặc bài toán, hãy cho tôi biết!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×