mik cần gấp giúp mik với ----- Nội dung ảnh ----- d) 6(4x - 3) - 4x² + 3x = 0 e) x³ + x² - 4x - 4 = 0 f) 2x(x - 3) - 3(3 - x) = 0 g) 9x² - 4 = 0 h) 4x² - 4x + 1 = 0 i) x² - 10x = -25; k) (x + 1)² = (3x - 4)² l) x² - 4 - (2 - x)(3 - 2x) = 0 m) x³ + 27 + (x + 3)(x - 9) = 0 *n) 3x² - 2x - 1 = 0 d) a) x(2x - 7) - 4x + 14 = 0 e) 2x³ + 6x² - 3x - 9 = 0 f) 5(x - 5) - 2x(5 - x) = 0 h) 4x² - 4x = 1; g) (1 - 2x)² = (3 - 2)x² h) x² - 9 = (x - 2)(3 - x) = 0 i) x² + 3x - 10 = 0 k) x² - 5x + 6 = 0 l) 2x² - 9x - 11 = 0
0 Xem trả lời
36 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation \(6(4x - 3) - 4x^2 + 3x = 0\), we will first simplify it step by step: 1. Distribute \(6\) in the first term: \[ 6(4x - 3) = 24x - 18 \] 2. Substitute this into the equation: \[ 24x - 18 - 4x^2 + 3x = 0 \] 3. Combine like terms (\(24x + 3x = 27x\)): \[ -4x^2 + 27x - 18 = 0 \] 4. Rearranging gives: \[ 4x^2 - 27x + 18 = 0 \] Now we will use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\) to solve for \(x\). Here, \(a = 4\), \(b = -27\), and \(c = 18\). 1. Calculate the discriminant: \[ b^2 - 4ac = (-27)^2 - 4(4)(18) = 729 - 288 = 441 \] 2. Calculate the roots: \[ x = \frac{27 \pm \sqrt{441}}{2 \cdot 4} = \frac{27 \pm 21}{8} \] This results in two possible values for \(x\): 1. \(x = \frac{27 + 21}{8} = \frac{48}{8} = 6\) 2. \(x = \frac{27 - 21}{8} = \frac{6}{8} = \frac{3}{4}\) **Final Solutions:** \[ x = 6 \quad \text{or} \quad x = \frac{3}{4} \]