LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hình vẽ sau. Hãy chứng tỏ AD//CG

Giúp em với ;-;
----- Nội dung ảnh -----
Bài 7: Cho hình vẽ sau. Hãy chứng tỏ \( AD \parallel CG \).
1 trả lời
Hỏi chi tiết
48
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng tỏ \( AD \parallel CG \), ta sẽ sử dụng quy tắc về tổng các góc trong một hình thang.

Có thể thấy rằng:

- \( \angle ABC = 130^\circ \)
- \( \angle CBA = 40^\circ \)
- \( \angle BAE = 50^\circ \)

Tổng các góc trong tam giác \( ABC \):

\[
\angle ABC + \angle BCA + \angle CAB = 180^\circ
\]

Ta có thể tìm góc \( \angle BCA \):

\[
130^\circ + 40^\circ + \angle CAB = 180^\circ
\]

Từ đó suy ra:

\[
\angle CAB = 180^\circ - 130^\circ - 40^\circ = 10^\circ
\]

Tiếp theo, xét tổng các góc tại điểm \( B \):

\[
\angle ABE + \angle ABC + \angle CBA = 180^\circ
\]

Thay giá trị các góc vào:

\[
\angle ABE + 130^\circ + 40^\circ = 180^\circ
\]

Từ đó suy ra:

\[
\angle ABE = 180^\circ - 130^\circ - 40^\circ = 10^\circ
\]

Vì \( \angle CAB = \angle ABE \) và chúng đều bằng \( 10^\circ \), theo định lý về các đường thẳng song song:

\[
AD \parallel CG
\]

Vậy chúng ta đã chứng minh được \( AD \parallel CG \).
5
1
Little Wolf
07/10 13:09:45
+5đ tặng
Chỉ ra AD // BE và CG // BE để suy ra  AD // CG 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 7 mới nhất
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư