Một người đứng trên tháp (tại \(B)\) của ngọn hải đăng cao \[75{\rm{ m}}\] quan sát hai lần một con tàu đang hướng về ngọn hải đăng. Lần thứ nhất người đó nhìn thấy tàu tại \(C\) với góc hạ là \(20^\circ ,\) lần thứ hai người đó nhìn thấy tàu tại \(D\) với góc hạ là \(30^\circ \) (hình 4). Hỏi con tàu đã đi được bao nhiêu mét giữa hai lần quan sát (Kết quả làm tròn đến hàng đơn vị).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp số: \(76{\rm{\;m}}.\)
Ta có \(Bx\) và \(AC\) cùng nằm trên phương ngang nên \(Bx\,{\rm{//}}\,AC,\) do đó \[\widehat {ACB} = \widehat {xBC} = 20^\circ ;\] \(\widehat {ADB} = \widehat {xBD} = 30^\circ \) (các cặp góc so le trong).
Xét tam giác \(ABC\) vuông tại \(A\), ta có \[AC = AB \cdot \cot C = \frac{{\tan C}} = \frac{{\tan 20^\circ }}{\rm{\;(m)}}{\rm{.}}\]
Xét tam giác \(ABD\) vuông tại \(A\), ta có \(AD = AB \cdot \cot D = \frac{{\tan D}} = \frac{{\tan 30^\circ }}{\rm{\;(m)}}{\rm{.}}\)
Ta có \(CD = AC - AD = \frac{{\tan 20^\circ }} - \frac{{\tan 30^\circ }} \approx 76{\rm{\;(m)}}{\rm{.}}\)
Vậy con tàu đã đi được xấp xỉ \(76{\rm{\;(m)}}\) giữa hai lần quan sát.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |