Hòa tan hoàn toàn 1,4 gam hỗn hợp Fe, và một kim loại hóa trị II bằng dd HCl dư thu được 1,12 L khí (đktc). Xác định kim loại hòa tan hoàn toàn 1,4 gam hỗn hợp Fe và một kim loại hóa trị II bằng dd HCl dư thu đc 1,12 L khí (đktc). xđ kim loại
Tham khảo câu trả lời từ Trợ lý ảo Lazi Để xác định kim loại hóa trị II trong hỗn hợp với Fe, chúng ta cần sử dụng các thông tin đã cho và các định luật hóa học. 1. **Tính số mol khí H₂ thu được từ phản ứng**: - Dễ dàng tính được bằng công thức: \[ n_{H_2} = \frac{V_{H_2}}{V_{0}} = \frac{1,12 \text{ L}}{22,4 \text{ L/mol}} = 0,05 \text{ mol} \] 2. **Phản ứng xảy ra**: - Kim loại Fe và kim loại hóa trị II phản ứng với HCl: \[ \text{Fe} + 2\text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2 \uparrow \] \[ \text{M} + 2\text{HCl} \rightarrow \text{MCl}_2 + \text{H}_2 \uparrow \] Trong đó M là kim loại hóa trị II. 3. **Xác định số mol H₂ từ Fe và M**: - Gọi số mol của Fe là \( n_{Fe} \) và số mol của kim loại M là \( n_M \). - Theo phương trình phản ứng, mỗi mol Fe và mỗi mol M tạo ra 1 mol H₂: \[ n_{H_2} = n_{Fe} + n_{M} = 0.05 \text{ mol} \] 4. **Tính khối lượng**: - Khối lượng của Fe là 56 g/mol. Gọi khối lượng M là \( M \) (g/mol). - Khối lượng hỗn hợp: \[ 1,4 g = n_{Fe} \cdot 56 + n_{M} \cdot M \] 5. **Giải hệ phương trình**: - Từ hai phương trình: \[ n_{Fe} + n_{M} = 0.05 \quad \text{(1)} \] \[ 1,4 = n_{Fe} \cdot 56 + n_{M} \cdot M \quad \text{(2)} \] Từ phương trình (1): \[ n_{M} = 0.05 - n_{Fe} \] Thay vào phương trình (2): \[ 1,4 = n_{Fe} \cdot 56 + (0.05 - n_{Fe})M \] \[ 1,4 = n_{Fe} \cdot 56 + 0.05M - n_{Fe} M \] \[ 1,4 = n_{Fe}(56 - M) + 0.05M \] Giải đối với nhiều giá trị \( n_{Fe} \) và thực hiện kiểm tra thì ta có thể thử \( n_{Fe} = 0.01 \Rightarrow 0.05 - 0.01 = 0.04 \) - Từ đó: \[ 1,4 = 0.01 \cdot 56 + 0.04M \] \[ 1,4 = 0.56 + 0.04M \] \[ 0.04M = 1,4 - 0.56 \Rightarrow 0.04M = 0.84 \Rightarrow M = \frac{0.84}{0.04} = 21 \] 6. **Xác định kim loại**: - Kim loại có hóa trị II với khối lượng mol là 21 g/mol là Magnesium (Mg). Vậy kim loại trong hỗn hợp là Mg.