Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC có hai đường trung tuyến AM, BN vuông góc với nhau, cạnh AB=5, góc ACB=30 độ. Tính diện tích tam giác ABC

Cho tam giác ABC có hai đường trung tuyến AM, BN vuông góc với nhau, cạnh AB=5, góc ACB=30 độ. Tính diện tích tam giác ABC.
0 Xem trả lời
Hỏi chi tiết
315
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tính diện tích tam giác ABC, chúng ta sẽ sử dụng thông tin đã cho. Các bước giải như sau:

1. **Đặt các điểm và cạnh**: Gọi M là trung điểm của cạnh BC và N là trung điểm của cạnh AC. Ta có AM và BN là hai đường trung tuyến vuông góc với nhau.

2. **Sử dụng công thức diện tích**: Diện tích \(S\) của tam giác ABC được tính bằng công thức:
\[
S = \frac{1}{2} \cdot AB \cdot AC \cdot \sin(\angle ACB)
\]
Trong đó, \(AB = 5\) và \(\angle ACB = 30^\circ\).

3. **Giả sử AC = c**: Để đơn giản, ta giả sử AC = \(c\). Diện tích có thể được viết thành:
\[
S = \frac{1}{2} \cdot 5 \cdot c \cdot \sin(30^\circ) = \frac{1}{2} \cdot 5 \cdot c \cdot \frac{1}{2} = \frac{5c}{4}
\]

4. **Tính độ dài của BC**: Sử dụng định lý Pythagorean cho tam giác AMN:
\[
AM^2 + BN^2 = AB^2
\]
Tuy nhiên, chúng ta cần tìm mối liên hệ giữa các cạnh khác để có thể tiếp tục.

5. **Sử dụng công thức độ dài trung tuyến**: Độ dài của một trung tuyến từ đỉnh A đến cạnh đối diện BC được tính bằng công thức:
\[
AM = \frac{1}{2} \sqrt{2AB^2 + 2AC^2 - BC^2}
\]
và tương tự cho BN.

6. **Tính toán**: Thay các giá trị vào các công thức để tính c và BC. Tuy nhiên, do AM và BN vuông góc nên ta biết rằng tích sản phẩm của hai độ dài sẽ bằng \( m^2 + n^2 = p^2\).

Ở đây, chúng ta có nhiều bước tính toán và xác định, nhưng để giải quyết được vấn đề thật sự là dựa vào góc.

Dựa vào các giá trị đã cho và các quy tắc hình học, diện tích tam giác ABC có thể suy ra có rất nhiều biến thể khi gán giá cho \(c\). Trong trường hợp này, dưới một số điều kiện, có thể suy ra diện tích = 5 * K (với K là một hằng số để tìm), nhưng mục tiêu cuối cùng là tính diện tích.

Tóm lại, chúng ta sẽ chỉ tính diện tích bằng công thức của tam giác vuông dưới điều kiện AM và BN vuông góc:
\[
S = \frac{5c}{4}
\]

Vòng lập này có thể được tính toán đến cuối cùng, đưa ra bài toán là xây dựng lại c với các hệ số đầu vào. Do vậy, bạn có thể chỉ định giá trị cụ thể hơn nữa.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×