Cho hệ cơ học như hình vẽ: Thanh AB = 3cm, trọng lượng 100N. Vât m có trọng lượng P = 50N. Thanh AB được giữ cân bằng nhờ dây CD; góc α = 30 độ. Tính các lực tác dụng lên thanh AB, biết AC = 2cm Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the problem, we need to analyze the system of forces acting on the beam AB. 1. **Given Data**: - Length of AB (L) = 3 cm - Weight of the beam (W) = 100 N - Weight of mass (P) = 50 N - Distance AC = 2 cm - Angle α = 30° 2. **Identify the Forces**: - The weight of the beam acts at its center (1.5 cm from A). - The weight of mass P acts downward at point C (2 cm from A). - Tension in cable CD, which we'll denote as T. 3. **Set up the Equilibrium Conditions**: Since the system is in equilibrium, we apply the following conditions: - **Sum of vertical forces (Y-axis)**: \[ T \, \text{(vertical component)} - W - P = 0 \] - **Sum of moments about point A** (to eliminate the weight of the beam): - Moment due to the weight of the beam = \(\frac{W \cdot L}{2} = \frac{100 \cdot 1.5}{100} = 150 \, \text{N.cm}\) - Moment due to the weight of the mass P = \(P \cdot 2\) - Moment due to tension (considering the vertical component): \(T \cdot 2 \cdot \sin(30^\circ)\) \[ \sum M_A = 0 = T \cdot 2 \cdot \sin(30^\circ) - 150 - (50 \cdot 2) \] 4. **Calculate Components**: - \(\sin(30^\circ) = \frac{1}{2}\) - The equation becomes: \[ T - 150 - 100 = 0 \] \[ T = 250 \, \text{N} \] 5. **Calculate the Vertical Component**: To find the vertical component of the tension: \[ T_y = T \cdot \sin(30^\circ) = 250 \cdot 0.5 = 125 \, \text{N} \] 6. **Final Summary**: The forces acting on the beam are: - Tension in cable CD = 250 N - Vertical reaction at A = 125 N (from the tension). - The weights (100 N downwards for beam and 50 N downwards for mass). **Conclusion**: The tension in the cable is **250 N**, and the upward force at A is **125 N**.