Tính \( C = \sqrt{49 - 12\sqrt{5}} - \sqrt{49 + 12\sqrt{5}} \), \( D = \sqrt{29 + 12\sqrt{5}} - \sqrt{29 - 12\sqrt{5}} \) Tham khảo câu trả lời từ Trợ lý ảo Lazi To calculate \( C \) and \( D \), we will simplify each expression step by step. ### Calculation of \( C \) We need to compute: \[ C = \sqrt{49 - 12\sqrt{5}} - \sqrt{49 + 12\sqrt{5}} \] We can simplify each square root individually. 1. For \( \sqrt{49 - 12\sqrt{5}} \): - Let \( 49 - 12\sqrt{5} = (\sqrt{a} - \sqrt{b})^2 \). - Expanding: \( a + b - 2\sqrt{ab} = 49 - 12\sqrt{5} \). - Thus, we have \( a + b = 49 \) and \( 2\sqrt{ab} = 12\sqrt{5} \), leading to \( \sqrt{ab} = 6\sqrt{5} \), hence \( ab = 180 \). We solve the equations: - \( x + y = 49 \) - \( xy = 180 \) This is the quadratic \( t^2 - 49t + 180 = 0 \). The roots will be: \[ t = \frac{49 \pm \sqrt{49^2 - 4 \cdot 180}}{2} \] The discriminant calculation: \[ 49^2 - 720 = 2401 - 720 = 1681, \] and taking the square root gives \( \sqrt{1681} = 41 \). Thus: \[ t = \frac{49 \pm 41}{2} \Rightarrow t_1 = 45, \, t_2 = 4. \] Therefore: - \( a = 45 \) and \( b = 4 \) (or vice versa). We confirm: \[ \sqrt{49 - 12\sqrt{5}} = \sqrt{45} - \sqrt{4} = 3\sqrt{5} - 2. \] 2. For \( \sqrt{49 + 12\sqrt{5}} \): - Similar approach: - Let \( 49 + 12\sqrt{5} = (\sqrt{c} + \sqrt{d})^2 \). Develop similar equations: - \( c + d = 49 \) - \( cd = 180 \). This leads to the same quadratic and roots: \[ t = 45, \, t = 4. \] Thus: \[ \sqrt{49 + 12\sqrt{5}} = \sqrt{45} + \sqrt{4} = 3\sqrt{5} + 2. \] Now, substitute back into \( C \): \[ C = (3\sqrt{5} - 2) - (3\sqrt{5} + 2) = -4. \] ### Calculation of \( D \) Next, we compute: \[ D = \sqrt{29 + 12\sqrt{5}} - \sqrt{29 - 12\sqrt{5}}. \] Following a similar procedure: 1. For \( \sqrt{29 + 12\sqrt{5}} \): - \( 29 + 12\sqrt{5} = (\sqrt{a} + \sqrt{b})^2 \). - This gives \( a + b = 29 \) and \( ab = 180 \). Solving \( t^2 - 29t + 180 = 0 \): \[ 29^2 - 720 = 841 - 720 = 121. \] Thus: \[ t = \frac{29 \pm 11}{2} \Rightarrow t_1 = 20, \, t_2 = 9. \] So \( \sqrt{29 + 12\sqrt{5}} = \sqrt{20} + \sqrt{9} = 2\sqrt{5} + 3 \). 2. For \( \sqrt{29 - 12\sqrt{5}} \): - Similar procedure leads to the same quadratic, giving: \[ \sqrt{29 - 12\sqrt{5}} = \sqrt{20} - \sqrt{9} = 2\sqrt{5} - 3. \] Now, substitute back into \( D \): \[ D = (2\sqrt{5} + 3) - (2\sqrt{5} - 3) = 6. \] ### Final Answers Thus, the results are: \[ C = -4, \quad D = 6. \]