Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC

----- Nội dung ảnh -----
Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC. Chứng minh:
a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O');
b) Hai đường tròn (O) và (O') tiếp xúc ngoài;
c) AH là tiếp tuyến chung của hai đường tròn (O) và (O');
d) AH = DE;
e) Diện tích tứ giác DEO'O bằng nửa diện tích tam giác ABC.
0 trả lời
Hỏi chi tiết
18
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh các yêu cầu trong bài toán mô tả tam giác vuông ABC và các đường tròn liên quan, ta sẽ tiến hành từng phần một:

### a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O')

**Chứng minh:**
1. Đường tròn (O) có đường kính HB, nên điểm H sẽ nằm trên đường tròn này.
2. Điểm D là hình chiếu của H lên AB. Theo tính chất hình chiếu, D sẽ nằm trên đoạn thẳng HB. Do đó, D thuộc (O).
3. Tương tự, E là hình chiếu của H trên AC, và do đó E sẽ nằm trên đoạn thẳng HC, suy ra E thuộc (O').

### b) Hai đường tròn (O) và (O') tiếp xúc ngoài

**Chứng minh:**
1. Độ dài của đoạn AH là đường cao của tam giác vuông ABC.
2. Đường tròn (O) có bán kính là \(\frac{HB}{2}\) và đường tròn (O') có bán kính là \(\frac{HC}{2}\).
3. Do H là hình chiếu vuông góc từ A đến AB và AC, nó nằm ngoài hai đường tròn này. Khi đó, tổng độ dài đường kính HB và HC là tổng độ dài đường kính của hai đường tròn, do đó (O) và (O') tiếp xúc ngoài.

### c) AH là tiếp tuyến chung của hai đường tròn (O) và (O')

**Chứng minh:**
1. Do AH là đường cao, nó vuông góc với AB và AC.
2. Vì D và E nằm trên (O) và (O'), nội tiếp thì AH sẽ tiếp xúc với hai đường tròn này tại H.

### d) AH = DE

**Chứng minh:**
1. Đoạn DE là chiều cao từ H xuống AB và AC, vì DE là hình chiếu của AH.
2. Do đó, DE = AH.

### e) Diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC

**Chứng minh:**
1. Diện tích của tam giác ABC = \(\frac{1}{2} \times AB \times AC\).
2. Diện tích tứ giác DEO’O sẽ bằng \(\frac{1}{2} \times DE \times AO\).
3. Vì DE bằng AH và DO bằng một nửa đoạn AL (từ A tới O), tứ giác DEO’ sẽ có diện tích bằng nửa diện tích tam giác ABC.

Tóm lại, các yêu cầu a), b), c), d), e) đều đã được chứng minh dựa trên các tính chất hình học cơ bản của tam giác và đường tròn.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k