Bài tập  /  Bài đang cần trả lời

Tìm x biết

----- Nội dung ảnh -----
Bài 3: Tìm x biết:
1) 2x³ - 50 = 0
2) 3x³ - 6x² = 0
3) 4x² - 49 = 0
4) x(x - 3) + x - 3 = 0
5) 2(x(x - 4) + x - 4 = 0
6) (x - 2)(3x + 3) = (x - 2)(2x - 1)
7) x² + 4x + 4 = 16
8) x² - 4 = 2(x² + 4x + 4)
9) (5x - 1)² = (3x + 2)²
10) x² - 6x + 9 = x - 3
11) x² - 2x - 15 = 0
12) 3x² - 2x - 1 = 0
3 Xem trả lời
Hỏi chi tiết
5
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Dưới đây là các bài toán phương trình cần giải:

1) \( 2x^3 - 50 = 0 \)
\(\Rightarrow 2x^3 = 50 \Rightarrow x^3 = 25 \Rightarrow x = \sqrt[3]{25}\)

2) \( 3x^3 - 6x^2 = 0 \)
\(\Rightarrow 3x^2(x - 2) = 0 \Rightarrow x^2 = 0 \) hoặc \( x - 2 = 0 \Rightarrow x = 0 \) hoặc \( x = 2\)

3) \( 4x^2 - 49 = 0 \)
\(\Rightarrow 4x^2 = 49 \Rightarrow x^2 = \frac{49}{4} \Rightarrow x = \pm \frac{7}{2} \)

4) \( x(x - 3) + x - 3 = 0 \)
\(\Rightarrow x^2 - 3x + x - 3 = 0 \Rightarrow x^2 - 2x - 3 = 0\)
\(\Rightarrow (x - 3)(x + 1) = 0 \Rightarrow x = 3 \) hoặc \( x = -1 \)

5) \( 2x(x - 4) + x - 4 = 0 \)
\(\Rightarrow 2x^2 - 8x + x - 4 = 0 \Rightarrow 2x^2 - 7x - 4 = 0\)
Sử dụng công thức nghiệm: \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
Tính được nghiệm.

6) \( (x - 2)(3x + 3) = (x - 2)(2x - 1) \)
Nếu \( x - 2 \neq 0 \):
\(\Rightarrow 3x + 3 = 2x - 1 \Rightarrow x = -4\)
Nếu \( x - 2 = 0 \Rightarrow x = 2\)

7) \( x^2 - 4 = 2(x^2 + 4x + 4) \)
Giải phương trình này để tìm giá trị của \( x \).

8) \( x^2 - 4 = 2(x^2 + 4x + 4) \)
Giải giống như bài 7.

9) \( (5x - 1)^2 = (3x + 2)^2 \)
Giải phương trình bình phương.

10) \( x^2 - 6x + 9 = x - 3 \)
Chuyển hết về một bên và giải.

11) \( x^2 - 2x - 15 = 0 \)
Giải dễ dàng bằng phương pháp phân tích.

12) \( 3x^2 - 2x - 1 = 0 \)
Giải bằng công thức nghiệm.

Nếu cần giải cụ thể cho từng bài, hãy cho tôi biết!
1
0
+5đ tặng

1) 2x³ - 50 = 0

  • Chuyển vế: 2x³ = 50
  • Chia cả hai vế cho 2: x³ = 25
  • Tính căn bậc ba: x = ∛25

2) 3x³ - 6x² = 0

  • Đặt nhân tử chung: 3x²(x - 2) = 0
  • Áp dụng tính chất tích bằng 0:
    • 3x² = 0 => x = 0
    • x - 2 = 0 => x = 2

3) 4x² - 49 = 0

  • Viết lại: (2x)² - 7² = 0
  • Áp dụng hằng đẳng thức a² - b² = (a - b)(a + b): (2x - 7)(2x + 7) = 0
  • Áp dụng tính chất tích bằng 0:
    • 2x - 7 = 0 => x = 7/2
    • 2x + 7 = 0 => x = -7/2

4) x(x - 3) + x - 3 = 0

  • Đặt nhân tử chung: (x - 3)(x + 1) = 0
  • Áp dụng tính chất tích bằng 0:
    • x - 3 = 0 => x = 3
    • x + 1 = 0 => x = -1

5) 2(x(x - 4) + x - 4) = 0

  • Đặt nhân tử chung: 2(x - 4)(x + 1) = 0
  • Áp dụng tính chất tích bằng 0:
    • x - 4 = 0 => x = 4
    • x + 1 = 0 => x = -1

6) (x - 2)(3x + 3) = (x - 2)(2x - 1)

  • Chuyển vế: (x - 2)(3x + 3) - (x - 2)(2x - 1) = 0
  • Đặt nhân tử chung: (x - 2)(3x + 3 - 2x + 1) = 0
  • Rút gọn: (x - 2)(x + 4) = 0
  • Áp dụng tính chất tích bằng 0:
    • x - 2 = 0 => x = 2
    • x + 4 = 0 => x = -4

7) x² + 4x + 4 = 16

  • Viết lại: (x + 2)² = 4²
  • Áp dụng hằng đẳng thức a² = b²:
    • x + 2 = 4 => x = 2
    • x + 2 = -4 => x = -6

8) x² - 4 = 2(x² + 4x + 4)

  • Mở ngoặc: x² - 4 = 2x² + 8x + 8
  • Chuyển vế: x² - 2x² - 8x = 8 + 4
  • Rút gọn: -x² - 8x = 12
  • Nhân cả hai vế với -1: x² + 8x = -12
  • Hoàn thiện bình phương: (x + 4)² = 4
  • Áp dụng hằng đẳng thức a² = b²:
    • x + 4 = 2 => x = -2
    • x + 4 = -2 => x = -6

9) (5x - 1)² = (3x + 2)²

  • Áp dụng hằng đẳng thức a² = b²:
    • 5x - 1 = 3x + 2 => 2x = 3 => x = 3/2
    • 5x - 1 = -(3x + 2) => 8x = -1 => x = -1/8

10) x² - 6x + 9 = x - 3

  • Viết lại: (x - 3)² = x - 3
  • Chuyển vế: (x - 3)² - (x - 3) = 0
  • Đặt nhân tử chung: (x - 3)(x - 3 - 1) = 0
  • Rút gọn: (x - 3)(x - 4) = 0
  • Áp dụng tính chất tích bằng 0:
    • x - 3 = 0 => x = 3
    • x - 4 = 0 => x = 4

11) x² - 2x - 15 = 0

  • Phân tích thành nhân tử: (x - 5)(x + 3) = 0
  • Áp dụng tính chất tích bằng 0:
    • x - 5 = 0 => x = 5
    • x + 3 = 0 => x = -3

12) 3x² - 2x - 1 = 0

  • Sử dụng công thức nghiệm của phương trình bậc hai:
    • x = [ -b ± √(b² - 4ac) ] / 2a
    • x = [ 2 ± √(4 + 12) ] / 6
    • x = [ 2 ± 4 ] / 6
    • x₁ = 1, x₂ = -1/3

Lưu ý:

  • Các bước giải có thể được trình bày theo nhiều cách khác nhau.
  • Nên kiểm tra lại kết quả bằng cách thay giá trị của x vào phương trình ban đầu.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Quỳnh
hôm qua
+4đ tặng
1) 2x³ - 50 = 0
2x³ = 50
x³ = 25
x = ∛25
2) 3x³ - 6x² = 0
3x²(x - 2) = 0
3x² = 0 hoặc x - 2 = 0
x = 0 hoặc x = 2
3) 4x² - 49 = 0
4x² = 49
x² = 49/4
x = ±√(49/4)
x = ±7/2
4) x(x - 3) + x - 3 = 0
(x - 3)(x + 1) = 0
x - 3 = 0 hoặc x + 1 = 0
x = 3 hoặc x = -1
5) 2(x(x - 4) + x - 4) = 0
2(x - 4)(x + 1) = 0
(x - 4)(x + 1) = 0
x - 4 = 0 hoặc x + 1 = 0
x = 4 hoặc x = -1
6) (x - 2)(3x + 3) = (x - 2)(2x - 1)
(x - 2)(3x + 3) - (x - 2)(2x - 1) = 0
(x - 2)(3x + 3 - 2x + 1) = 0
(x - 2)(x + 4) = 0
x - 2 = 0 hoặc x + 4 = 0
x = 2 hoặc x = -4
7) x² + 4x + 4 = 16
(x + 2)² = 16
x + 2 = ±√16
x + 2 = ±4
x = 2 hoặc x = -6
 
1
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×