Trong một hội chợ đón xuân, một gian hàng sữa muốn xếp 900 hộp sữa theo quy luật là hàng trên cùng có 1 hộp sữa, mỗi hàng ngay phía dưới lần lượt được xếp nhiều hơn 2 hộp so với hàng trên nó (tham khảo hình vẽ dưới). Hỏi hàng dưới cùng có bao nhiêu hộp sữa?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Số hộp sữa ở mỗi hàng từ trên xuống lập thành một cấp số cộng với số hạng đầu \({u_1} = 1\), công sai \(d = 2\). Khi đó, tổng của \(n\) số hạng đầu cấp số cộng là:
\[{S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] \Leftrightarrow 900 = \frac{n}{2}\left[ {2 \cdot 1 + \left( {n - 1} \right) \cdot 2} \right]\] \( \Leftrightarrow 1800 = 2{n^2} \Leftrightarrow {n^2} = 900\). Suy ra \(n = 30\).
Vậy số hộp sữa của dãy cuối cùng là: \({u_{30}} = {u_1} + 29d = 1 + 29 \cdot 2 = 59\).
Đáp án: \(59\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |