a) √(4,5) - (1/2)√72 + 5√(1/2)
= √(9/2) - (1/2)√(36*2) + 5√(1/2)
= 3/√2 - (1/2)*6√2 + 5/√2
= (3/√2) - 3√2 + (5/√2)
= (8/√2) - 3√2
= (8√2)/2 - 3√2
= 4√2 - 3√2
= √2
b) √32 - √18 + 4/√2
= √(162) - √(92) + 4/√2
= 4√2 - 3√2 + (4√2)/2
= 4√2 - 3√2 + 2√2
= 3√2
c) 40√(25/6) - 10√(3/2) - 12√(98/3)
= 40*(5/√6) - 10*(√6)/2 - 12*(7√2)/√3
= (200√6)/6 - 5√6 - (84√6)/3
= (100√6)/3 - 5√6 - 28√6
= (100√6)/3 - (15√6)/3 - (84√6)/3
= (100√6 - 15√6 - 84√6)/3
= √6/3
d) √200 - √50 + 4√(1/8)
= √(1002) - √(252) + 4/(2√2)
= 10√2 - 5√2 + 2/√2
= 10√2 - 5√2 + (2√2)/2
= 10√2 - 5√2 + √2
= 6√2
e) 4√(2/9) + (1/2)√2 + √(1/18)
= 4√2/3 + (1/2)√2 + 1/(3√2)
= (4√2)/3 + (1/2)√2 + (√2)/6
= (8√2)/6 + (3√2)/6 + (√2)/6
= (12√2)/6
= 2√2
f) 2√3 - √75 + √(1 - √3)²
= 2√3 - √(25*3) + |1 - √3|
= 2√3 - 5√3 + (√3 - 1) (vì 1 < √3 nên |1-√3| = √3 - 1)
= -3√3 + √3 - 1
= -2√3 - 1