1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 Tham khảo câu trả lời từ Trợ lý ảo Lazi Let's simplify the expression step by step. The expression appears to be: \[ \frac{1}{1 - x} + \frac{1}{1 + x} + \frac{2}{1 + x^2} + \frac{4}{1 + x^4} + \frac{1}{1 - x} + \frac{1}{1 + x} + \frac{2}{1 + x^2} + \frac{4}{1 + x^4}. \] We can combine like terms. Notice that the first four terms and the last four terms are identical. Therefore, we can simplify it as: \[ 2\left(\frac{1}{1 - x} + \frac{1}{1 + x} + \frac{2}{1 + x^2} + \frac{4}{1 + x^4}\right). \] Now, let's analyze each component separately: 1. **Combine \(\frac{1}{1 - x}\) and \(\frac{1}{1 + x}\)**: \[ \frac{1}{1 - x} + \frac{1}{1 + x} = \frac{(1 + x) + (1 - x)}{(1 - x)(1 + x)} = \frac{2}{1 - x^2}. \] 2. **Compose \(\frac{2}{1 + x^2} + \frac{4}{1 + x^4}\)**: We can write \(1+x^4 = (1 + x^2)(1 - x^2 + x^4)\). Thus, we can combine these fractions. The common denominator would be \((1 + x^2)(1 + x^4)\): - First, we need to express \(\frac{2}{1 + x^2}\) with the common denominator: \[ \frac{2(1 + x^4)}{(1 + x^2)(1 + x^4)} = \frac{2 + 2x^4}{(1 + x^2)(1 + x^4)}. \] - The next one is: \[ \frac{4}{1 + x^4} = \frac{4(1 + x^2)}{(1 + x^2)(1 + x^4)} = \frac{4 + 4x^2}{(1 + x^2)(1 + x^4)}. \] Now, we can add these two results: \[ \frac{(2 + 2x^4) + (4 + 4x^2)}{(1 + x^2)(1 + x^4)} = \frac{6 + 4x^2 + 2x^4}{(1 + x^2)(1 + x^4)}. \] 3. **Putting everything back together**: Now plug the combined fractions back into the expression: \[ 2\left(\frac{2}{1 - x^2} + \frac{6 + 4x^2 + 2x^4}{(1 + x^2)(1 + x^4)}\right). \] Thus, the expression simplifies to: \[ 2\left(\frac{2}{1 - x^2} + \frac{6 + 4x^2 + 2x^4}{(1 + x^2)(1 + x^4)}\right). \] This is a clearer way to represent the original expression. Further simplifications, if desired, will depend on specific values of \(x\) or additional context.