Bài tập  /  Bài đang cần trả lời

Tìm dư của phép chia x^27 + x^9 + x^3 + x cho x^2 - 1

1) Tìm dư của phép chia x^27 + x^9 + x^3 + x cho x^2 - 1 (làm rõ ràng nhé)
2) Chứng minh rằng:
A = x^2 - x^9 - x^100 chia hết cho B = x^2 - x+ 1
Chia đa thức và định lí Bezout
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
1 Xem trả lời
Hỏi chi tiết
416
5
1
Nguyễn Thành Trương
24/08/2019 08:44:12
1)
* Cách 1: Dựa theo hằng đẳng thức a^n-b^n=(a-b)[a^(n-1)+a^(n-2) .b+...+ab^(n-2)+b^(n-1)]
thì a^n - b^n chia hết cho a-b.
Ta có: x^27+x^9+x^3+x =(x^27-x) +(x^9-x)+(x^3-x)+4x
=x(x^26-1) +x(x^8-1)+x(x^2-1)+4x
có ba biểu thức đầu của tổng chia hết cho x^2-1 nên dư của đa thức cho khi chia cho x^2-1 là 4x.
* Cách 2: Đặt đa thức ban đầu là P(x).
Chia P(x) cho x^2-1 thì dư có dạng là ax+b, có biểu diễn: P(x)=(x^2-1).Q(x)+ax+b (*)
Chọn x=1, x=-1 thay vào (*) ta được:
P(-1)=-a+b và P(1)=a+b
hay -4=-a+b và 4=a+b
hay a=4, b=0
KLuận: dư là ax+b=4x.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×