LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A, phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE. Chứng minh tứ giác BEDC là hình thang cân

Cho tam giác ABC cân tại A, phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE. Chứng minh :
a) Tứ giác BEDC là hình thang cân
b) BE=ED=DC
c) 4 điểm A, I, O, J thẳng hàng
5 trả lời
Hỏi chi tiết
3.153
1
0
Nguyễn Thị Nhung
04/09/2019 16:38:11
a) có ^ABC = ^ACB (hiễn nhiên)
=> ^DBC = ^ECB, BC là cạnh chung
=> tgiác DBC = tgiác ECB
=> BE = CD mà AB = AC
=> AE/AB = AD/AC
=> ED // BC
b) từ cm trên đã có BE = CD, ta chỉ cần cm BE = ED?
Có: ^EDB = ^DBC (so le trong)
mà ^DBC = ^EBD (BD là phân giác)
=> ^EDB = ^DBC = ^EBD
=> tgiác BED cân tại E
=> BE = ED

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
Nguyễn Thị Nhung
04/09/2019 16:38:46
c)
*AI cắt ED tại J', ta cm J' ≡ J
Từ tính chất tgiác đồng dạng ta có:
EJ'/BI = AE/AB = ED/BC = ED/2BI
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J
Vậy A,I,J thẳng hàng
*OI cắt ED tại J" ta cm J" ≡ J
hiễn nhiên ta có:
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC)
mặt khác:
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh)
=> tgiác J"DO đồng dạng với tgiác IBO
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J
Tóm lại A,I,O,J thẳng hàng
1
0
Meu
04/09/2019 17:21:17
Hình vẽ nhé..
2
0
Meu
04/09/2019 17:25:40
Câu a nhé..
2
0
Meu
04/09/2019 17:30:07
Câu b ạ..

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư