Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có góc A = 90 độ, góc B = 30 độ. Lấy điểm D trên cạnh AC, E trên cạnh AB sao cho góc ABD = 1/3góc ABC, góc ACE = 1/3góc ACB, BD cắt CE tại M. Tính số đo các góc của tam giác MDE

Cho tam giác ABC có góc A = 90 độ, góc B = 30 độ. Lấy điểm D trên cạnh AC, E trên cạnh AB sao cho góc ABD = 1/3
góc ABC, góc ACE = 1/3
góc ACB, BD cắt CE tại M. Tính số đo các góc của tam giác MDE ( gọi ý: Dựng N là giao điểm hai phân giác các góc MBC và MCB. Chứng minh: ME = MN = MD)

5 trả lời
Hỏi chi tiết
745
1
1
Hà nguyễn
27/04/2020 09:09:27

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Hà nguyễn
27/04/2020 09:09:57

Vẽ 2 tia phân giác của ^MCB và ^MBC, ta được: ^B1=^B2=^B3=1/3^ABC và ^C1=^C2=^C3=1/3^ACB.

Ta có: ^C1=1/3^ACB => ^C2+^C3=1-1/3^ACB=2/3^ACB =>  ^MCB=2/3^ACB (1)

Xét tam giác ABC: ^BAC=900 => ^ABC+^ACB=900 => ^ACB=900-^ABC=900-300=600=> ^ACB=600.

Thay ^ACB=600 vào (1), ta có: ^MCB=2/3.600=400.

Tương tự: ^B1=1/3^ABC => ^B2+^B3=2/3^ABC => ^MBC=2/3^ABC (2)

Thay ^ABC=300 vào (2), ta có: ^MBC=2/3.300=200.

Xét tam giác CMB: ^CMB=1800-(^MCB+^MBC)=1800-(400+200)=1800-600=1200 => ^CMB=1200.

Mà ^CMB=^DME (Đối đỉnh) => ^DME=1200.

N là giao của 2 đường phân giác của ^MBC và ^MCB trong tam giác CMB => MN là phân giác ^CMB.

=> ^M1=^M2=^CMB/2=1200/2=600 (3)

1
0
Hà nguyễn
27/04/2020 09:10:11

Lại có: ^CDM là góc ngoài của tam giác ADB => ^CDM=^DAB+^ABD=900+1/3ABC.

^ABC=300=>1/3^ABC=100. Thay cào biểu thức trên: ^CDM=900+100=1000.

^C1=1/3^ACB => ^C1=1/3.600=200. Xét tam giác DCM: ^DMC=1800-(^CDM+^C1)=1800-(1000+200)=600 => ^DMC=600 (4)

Từ (3) và (4) => ^M1=^M2=^DMC=600, mà ^EMB=^DMC => ^M2=^EMB=600.

Xét tam giác CDM và tam giác CNM có: 

^C1=^C2=1/3^ACB

Cạnh CM chung      => Tam giác CDM = Tam giác CNM (g.c.g)

^DMC=^M1=600

=> DM=NM (2 cạnh tương ứng) (5)

1
0
Hà nguyễn
27/04/2020 09:10:27

Xét tam giác BEM và tam giác BNM có:

^B1=^B2=1/3^ABC

Cạnh BM chung       => Tam giác BEM = Tam giác BNM (g.c.g) 

^EMB=^M2=600

=> EM=NM (2 cạnh tương ứng) (6)

Từ (5) và (6) => DM=EM=NM => Tam giác MDE cân tại M => ^MDE=^MED=(1800-^DME)/2

Thay ^DME=1200 vào biểu thức trên, ta có: ^MDE=^MED=(1800-1200)/2=600/2=300.

Vậy các góc của tam giác MDE là: ^DME=1200, ^MDE=^MED=30^0

1
0
Hà nguyễn
27/04/2020 09:10:43
Chúc bạn học tốt !!! Lazi ~

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư