Bài tập  /  Bài đang cần trả lời

Chứng minh tứ giác BHCD là hình bình hành

cho tam giác abc có ba góc nhọn , trực tâm h đường thẳng vuông góc với ab kẻ từ b cắt đươngt hẳng vuông góc với ac kẻ từ c tại d
a) chứng minh tứ giác bhcd là hình bình hành 
b) gọi m là trung điểm bc, o là trung điểm ad chứng minh 2om=ah
c) gọi m là trọng tâm tam giác abc chứng minh ba điểm h,g,o thẳng hàng

4 trả lời
Hỏi chi tiết
859
1
2
Snwn
15/01/2021 21:50:05
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
1
Kinomoto Hanako
15/01/2021 21:50:40
+4đ tặng
a )
H là trực tâm của tam giác ABC => BH vuông góc với AC 
Mà DC lạ vuông góc với AC(gt) 
=> BH song song DC (1) 
H là trực tâm của tam giác ABC => CH vuông góc với AB 
Mà DB lạ vuông góc với AB(gt) 
=> CH song song DB (2) 
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD 
=> BHCD là hình bình hành. 
b ) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường 
=> M cũng là trung điểm của HD 
mà O là trung điểm của AD 
=> OM là đường trung bình tam giác ADH 
=> OM = 1/2AH (dpcm)  
1
1
Nguyễn Anh Minh
15/01/2021 21:52:43
+3đ tặng
c) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường
=> M cũng là trung điểm của HD
mà O là trung điểm của AD
=> OM là đường trung bình tam giác ADH
=> OM = 1/2AH (dpcm)
3) và OM//AH
mà AH vuông góc BC
=> OM vuông góc với BC
gọi I là giao điểm của AM và OH
do AH//OM (cùng vuông góc BC)
=> tam giác IAH đồng dạng IMO
=> IA/IM = AH/OM = 2OM/OM = 2
=> điểm I thuộc trung tuyến AM và cách A một khoảng như trọng tâm G
=> I trùng G
vậy H,G,O thẳng hàng
1
0
Nguyễn Trọng Huy
15/01/2021 22:14:05
+2đ tặng
H là trực tâm của tam giác ABC => BH vuông góc với AC 
Mà DC lạ vuông góc với AC(gt) 
=> BH song song DC (1) 
H là trực tâm của tam giác ABC => CH vuông góc với AB 
Mà DB lạ vuông góc với AB(gt) 
=> CH song song DB (2) 
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD 
=> BHCD là hình bình hành. 
b ) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường 
=> M cũng là trung điểm của HD 
mà O là trung điểm của AD 
=> OM là đường trung bình tam giác ADH 
=> OM = 1/2AH (dpcm)  

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư