Bài tập  /  Bài đang cần trả lời

Bài 6 trang 104 sgk toán 11

1 Xem trả lời
Hỏi chi tiết
508
0
0
Tô Hương Liên
12/12/2017 02:10:38
Bài 6. Cho hình vuông \(C_1\) có cạnh bằng \(4\). Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông lại làm tiếp tục như trên để được hình vuông khác. Tiếp tục quá trình như trên, ta nhận được dãy các hình vuông. Gọi  \(a_1\) là độ dài cạnh của hình vuông \(C_n\). Chứng minh dãy số \((a_n)\) là một cấp số nhân. 
Hướng dẫn giải:

Xét dãy số \((a_n)\), ta có \(a_1= 4\).
Giả sử hình vuông cạnh \(C_n\) có độ dài cạnh là \(a_n\). Ta sẽ tính cạnh \(a_{n+1}\) của hình vuông \(C_{n+1}\) Theo hình 44, áp dụng định lí Pi-ta-go, ta có:
\({a_{n + 1}} = \sqrt {{{\left( \right)}^2} + {{\left( \right)}^2}}  = {a_n}.{{\sqrt {10} } \over 4}\forall n \in {\mathbb N}^*\) 
Vậy dãy số \((a_n)\) là cấp số nhân với số hạng đầu là \(a_1= 4\) và công bội \(q = {{\sqrt {10} } \over 4}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×