Bài 4. Cho hai đường thẳng \(a\) và\(b\) song song với nhau. Hãy chỉ ra một phép tịnh tiến biến \(a\) thành \(b\). Có bao nhiêu phép tịnh tiến như thế?
Lời giải:Giả sử \(a\) và \(b\) có vectơ chỉ phương là \(\overrightarrow{v}\)
. Lấy điểm \(A\) bất kì thuộc \(a\) và điểm \(B\) bất kì thuộc \(b\). Với mỗi điểm \(M\), gọi \(M'\) = \(T_{\vec{AB}}\) \((M)\) . Khi đó \(\overrightarrow{MM'}\)= \(\overrightarrow{AB}\). Suy ra \(\overrightarrow{AM}\) = \(\overrightarrow{BM'}\)
Ta có:
\(M ∈ a ⇔\) \(\overrightarrow{AM}\) cùng phương với \(\overrightarrow{v}\) ⇔ \(\overrightarrow{BM'}\) cùng phương với \(\overrightarrow{v}\) \(⇔ M' ∈ b\).
Từ đó suy ra phép tịnh tiến theo \(\overrightarrow{AB}\) biến \(a\) thành \(b\).
Vì \(A,B\) là các điểm bất kì ( trên \(a\) và \(b\) tương ứng) nên có vô số phép tịnh tiến biến \(a\) thành \(b\).