Bài 1: Cho tam giác ABC. Gọi M là trung điểm cạnh AB. Trên cạnh AC, lấy điểm N sao cho AN = 2NC. Gọi I là giao điểm của BN và CM. Chứng minh: Diện tích tam giác BIC bằng diện tích tam giác AIC
Hình bài 4: file:///D:/B4.jpg
Bài 2: Cho tam giác ABC có BC = a, đường cao AH = h. Từ điểm I trên đường cao AH, vẽ đường thẳng song song với BC, cắt hai cạnh AB, AC lần lượt tại M và N. Vẽ MQ, NP vuông góc với BC. Đặt AI = x.
a) Tính diện tích tứ giác MNPQ theo a, h, x.
b) Xác định vị trí điểm I trên AH để diện tích tứ giác
Hình bài 5: file:///D:/B5.jpg
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Chứng minh AH′AHAH′AH270cm2 = B′C′BCB′C′BC
Vì B'C' // với BC => B′C′BCB′C′BC = AB′ABAB′AB (1)
Trong ∆ABH có BH' // BH => AH′AHAH′AH = AB′BCAB′BC (2)
Từ 1 và 2 => B′C′BCB′C′BC = AH′AHAH′AH
b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.
Áp dụng kết quả câu a) ta có: AH' = 1313 AH
B′C′BCB′C′BC = AH′AHAH′AH = 1313 => B'C' = 1313 BC
=> SAB’C’= 1212 AH'.B'C' = 1212.13
chúc bạn học tốt
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |