Cho tam giác ABC nhọn nội tiếp đường tròn tâm O trên cung nhỏ BC lấy điểm D bất kì dm vuông góc với bc tại m dn vuông góc với AC tại N vẽ DK vuông góc với AB tại K Chứng minh M N K thẳng hàng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi I là giao điểm của PE và QF. Ta thấy P thuộc trung trực của BE nên ΔΔBPE cân tại P
Kết hợp với ^PBE = 450 => ΔΔPBE vuông cân tại P. Tương tự ΔΔCQF vuông cân tại Q.
Do đó ^POQ= ^OPE = ^OQF = 900 cho nên tứ giác POQI là hình chữ nhật.
=> ^EIF = 900. Mà ^IEF = ^PEB = 450 nên ΔΔEIF vuông cân tại I
Ta có ^EMF = ^AMD = 450 = 1/2.^EIF => ΔΔMEF nội tiếp đường trong tâm I bán kính IE=IF
Cũng dễ có PE // AO (Cùng vuông góc OB). Do vậy ^IME = ^IEM = ^PEA = ^OAE = ^OMA
=> Hai tia MI,MO trùng nhau => O,I,M thẳng hàng. Từ tứ giác POQI là hình chữ nhật ta suy ra OI chia đôi PQ
=> OM cũng chia đôi PQ (đpcm).
b) Dễ thấy khoảng cách tứ K,O,L đến BC bằng AB/2 nên K,O,L thẳng hàng.
Khi đó dễ thấy tứ giác PQTS là hình thang cân nhận KL làm trục đối xứng
Lúc này ta có ^POI = ^OPQ = ^OST => OI vuông góc với ST hay OM vuông góc với ST
=> ^VUM = 900 - ^UMO = 900 - ^OAM = 900 - ^MDC = ^ADV => Tứ giác DAUV nội tiếp
=> ^KUV = ^ADV = 1800 - ^VLK. Từ đây có tứ giác KLVU nội tiếp
Hoặc 4 điểm K,L,U,V cùng thuộc một đường tròn (đpcm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |