Bài tập  /  Bài đang cần trả lời

Cho đường tròn tâm O, đường kính AB, dây CD vuông góc AB tại M thuộc bán kính OA. Gọi I là 1 điểm thuộc bán kính OA

Cho đường tròn tâm O, đường kính AB, dây CD vuông góc AB tại M thuộc bán kính OA. Gọi I là 1 điểm thuộc bán kính OA. Các tia CI, DI lần lượt cắt đường tròn tâm O ở E,F
a) CM: Tâm giác ICD cân
b) Gọi H,K theo thứ tự là chân đường vuông góc kẻ từ O đến CE, DE. Số sánh OH và OK
c) CM: Tam giác IEF cân
d) Tứ giác CFED là hình gì? Vì sao?
1 Xem trả lời
Hỏi chi tiết
1.621
1
0
NgHaa
16/08/2021 07:47:33
+5đ tặng

a) Ta có: AB⊥CDAB⊥CD tại MM

⇒MC=MD⇒MC=MD (định lý đường kính - dây cung)

Xét ΔICD∆ICD có:

MC=MD(cmt)MC=MD(cmt)

IM⊥CD(CD⊥AB)IM⊥CD(CD⊥AB)

Do đó ΔICD∆ICD cân tại II

b) Ta có:

ΔICD∆ICD cân tại II

⇒ˆICD=ˆIDC⇒ICD^=IDC^

⇒ˆECD=ˆFDC⇒ECD^=FDC^

⇒⌢ED=⌢FC⇒ED⌢=FC⌢

⇒⌢ED+⌢EF=⌢FC+⌢EF⇒ED⌢+EF⌢=FC⌢+EF⌢

⇒⌢FD=⌢EC⇒FD⌢=EC⌢

⇒DF=CE⇒DF=CE

⇒OH=OK⇒OH=OK (Hai dây cung bằng nhau thì khoảng cách từ tâm đến hai dây đó bằng nhau)

c) Ta có:

⌢ED=⌢FCED⌢=FC⌢

⇒ˆDFE=ˆCEF⇒DFE^=CEF^

⇒ˆIFE=ˆIEF⇒IFE^=IEF^

⇒ΔIEF⇒∆IEF cân tại II

d) Ta có:

ˆICD=ˆIFEICD^=IFE^ (cùng chắn ⌢EDED⌢)

mà ˆICD=ˆIDCICD^=IDC^ (ΔICD∆ICD cân tại II)

nên ˆIFE=ˆIDCIFE^=IDC^

⇒EF//CD⇒EF//CD

⇒CDEF⇒CDEF là hình thang

Ta lại có: CE=DFCE=DF (câu b)

Do đó CDEFCDEF là hình thang cân

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×