Bài 1. Viết phương trình mặt phẳng:
a) Đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến.
b) Đi qua điểm \(A(0 ; -1 ; 2)\) và song song với giá của các vectơ \(\overrightarrow{u}(3; 2; 1)\) và \(\overrightarrow{v}(-3; 0; 1)\).
c) Đi qua ba điểm \(A(-3 ; 0 ; 0), B(0 ; -2 ; 0) và C(0 ; 0 ; -1)\).
Giải:
a) Măt phẳng \((P)\) đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến có phương trình:
\(2(x - 1) + 3(x +2) + 5(z - 4) = 0\) \(⇔ (P) : 2x + 3y + 5z -16 = 0\).
b) Xét \(\overrightarrow{n}=\left [\overrightarrow{u}.\overrightarrow{v} \right ] = (2 ; -6 ; 6)\), khi đó \(\overrightarrow{n} \bot (Q)\) là mặt phẳng qua \(A (0 ; -1 ; 2)\) và song song với \(\overrightarrow{u}\),\(\overrightarrow{v}\) (nhận \(\overrightarrow{u}\),\(\overrightarrow{v}\) làm vectơ chỉ phương).
Phương trình mặt phẳng \((Q)\) có dạng:
\(2(x - 0) - 6(y + 1) + 6(z - 2) = 0\) \( ⇔ (Q) :x - 3y + 3z - 9 = 0\)
c) Gọi \(R)\) là mặt phẳng qua \(A, B, C\) khi đó \(\overrightarrow{AB}\), \(\overrightarrow{AC}\) là cặp vectơ chỉ phương của \((R)\).
\(\overrightarrow{n}=\left [\overrightarrow{AB},\overrightarrow{AC} \right ]=\begin{vmatrix} -2 &0 \\ 0 & -1 \end{vmatrix};\begin{vmatrix} 0 & 3\\ -1& 3 \end{vmatrix}; \begin{vmatrix} 3 & -2\\ 3& 0 \end{vmatrix}\)
\(= (2 ; 3 ; 6)\)
Vậy phương trình mặt phẳng \((R)\) có dạng: \(2x + 3y + 6z + 6 = 0\)